Test and Measurement
Division

Service Manual Instrument

SPECTRUM ANALYZER

R\&S FSU3

1129.9003.03

R\&S FSU8
1129.9003.08

R\&S FSU26
1129.9003.26

Tabbed Divider Overview

Index
Safety Instructions
Certificate of Quality
Spare Parts Express Service
List of R\&S Representatives
Contents of Manuals for Spectrum Analyzer FSU
Service and Repair
Tabbed Divider
1 Chapter 1: Performance Test
2 Chapter 2: Adjustment
3 Chapter 3: Repair
4 Chapter 4: Firmware Update / Installation of Options
5 Chapter 5: Documents

Index

A

Adjustment ..2.1
frequency accuracy ...2.6
Frequency response correction2.8
functions...2.2
level accuracy ...2.4
level of the calibration signal....................................2.2
manual ...2.3
Measuring equipment and Accessories2.3
module data..2.8
reference frequency...2.2

B

Bandwidth
Check..1.9
check level accuracy ...1.8
Battery replacement...3.17
Block circui diagram...5.5, 5.15
Block diagram description..3.1
Boot Problems Troubleshooting...................................3.56

C

Calibration signal function.3.8

D

Detector
error message ... 3.61
function...3.6
replacement..3.37
Display Linearity
Check...1.14
Documents ..5.1

E

Electronic Attenuator
Check 1.32
function. 3.2
error message
LOUNL 3.77
Error message
DETECTOR Access failed! 3.61
LOUNL 3.77
External Generator Control
replacement. 3.52
FFan
replacement. 3.28
FFT bandwidth function. 3.7
FFT bandwith check. 1.8
Firmware update 4.1
Floppy disk drive replacement. 3.26
Frequency accuracy adjustment. 2.6
Check 1.3
Frequency response
Check. 1.11
correction 2.8
Front module controller
function. 3.10
replacement 3.13
Front panel. 3.9
Frontend
Function. 3.3
replacement 3.36
Function description 3.1
H
Hard disk replacement 3.20
IIF Filter
function. 3.4
replacement 3.38
IF Gain
Check 1.16
IF image frequency rejection Check 1.4
IF rejection check 1.5
Imunity to interference
Check 1.3
Instrument design. 3.1
K
Key/Probe
function 3.10
Keyboard
function. 3.9
replacement 3.23
L
LC-Display 3.9
replacement 3.21
Level accuracy
adjustment. 2.4
Check 1.11
Lithium battery
replacement 3.17
M
Manuel adjustment 2.3
Measuring equipment adjustment 2.3
Performance Test 1.1
troubleshooting 3.53
Mechanical Drawings 5.5
Microwave converter
function. 3.4
Replacing 3.42
Module replacement. 3.11
Battery 3.17
DC/AC-Converter. 3.21
Detectorboard A120 3.37
External Generator Control 3.52
Fan 3.28
Floppy disk drive 3.26
Front module controller A90 3.13
Hard disk 3.20
IF-Filter A130 3.38
Keyboard 3.23
Labeling panel 3.25
LC-Display 3.21
Motherboard A10 3.31
MW Converter Unit A160 3.39, 3.42
OCXO 3.46
Power supply 3.27
RF Attenuator 3.33
RF Frontend 3.36
RF INPUT connector 3.30
RF input connector (cable W1) 3.29
Switching mat 3.23
Switching membrane 3.23
Modules overview. 3.12
Motherboard
3.10
3.10
function
function 3.31
NNoise display
Check. 1.10
Nonlinearities
Check 1.6
0
OCXO
function 3.8
replacement. 3.46
Option
FSU-B25 function 3.2
FSU-B4 function 38
FSP-B10 replacement 3.52
FSU-B4 replacement 3.46
installation 4.2
list. 4.2
P
Password 2.2
Performance Test 1.1
Bandwidth 1.9
Display Linearity 1.14
Electronic Attenuator (B25) 1.32
Frequency accuracy 1.3
Frequency response 1.11
Frequency Response with Elec. Attenuator (B25) ..1.28
Frequency Response with Preamplifier (B25) 1.25
Harmonic distortion 1.7
IF image frequency rejection 1.4
IF rejection 1.5
IF-Gain Switching 1.16
Imunity to interference 1.3
Level accuracy 1.11
Level accuracy Bandw. Switch 1.8
Level accuracy with Electr. Attenuator (B25) 1.28
Level accuracy with Preamplifier (B25) 1.25
Noise display 1.10
Noise Display with Preamplifier (B25). 1.24
Nonlinearities 1.6
Non-linearities with Electronic Attenuator (B25) 1.30
Phase Noise 1.18
Reference accuracy 1.3
Reference Level Switching 1.16
Report FSP 1.33
Report Option FSU-B25 1.47
RF Attenuator. 1.15
RF Attenuator (with Option B25) 1.31
Shape factor 1.9
Third-Order Intercept 1.6
Third-Order Intercept w. Elec. Attenuator (B25)... 1.30
Phase Noise
Check 1.18
Power cables 5.3
Power supply
function. 3.10
replacement 3.27
Preamplifier function 3.2
Probe power connector 3.35
RReference frequency
Check 1.3
Reference Level Switching Check 1.16
Refurbished Modules 5.2
Repair 3.1
Replacement module. 3.11
RF Attenuator
Check. 1.15
Check (with Option B25) 1.31
function. 3.2
replacement 3.33
RF converter Troubleshooting 3.77
RF INPUT connector
Replacement 3.30
S
Second-order harmonic distortion Check 1.7
Service menu 2.1
Shape factor Check 1.9
Shipping Instrument 5.1
Module. 5.1
Softkey
CAL SIGNAL POWER 2.2
ENTER PASSWORD. 2.2
FIRMWARE UPDATE 4.1
REF FREQUENCY 2.2
RESTORE FIRMWARE 4.1
SAVE CHANGES 2.2
SELFTEST RESULTS 3.64
SERVICE 2.1
Software update 4.1
Spare parts
electrical parts. 5.5, 5.15
list of all parts 5.7
Ordering 5.2
Refurbished Modules 5.2
Switch-on problems 3.54
TThird-Order Intercept
check 1.6
check (with Elec. Attenuator) 1.30
Troubleshooting 3.53
loading module-EEPROMs 3.62
local oscillator 3.77
problems with booting 3.56
RF converter 3.77
Selftest 3.64
switch-on problems 3.54
V
Video bandwidth 3.7
Vol./Phones
function. 3.10

Safety Instructions

This unit has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards.

To maintain this condition and to ensure safe operation, the user must observe all instructions and warnings given in this operating manual.

1. The unit may be used only in the operating conditions and positions specified by the manufacturer. Unless otherwise agreed, the following applies to R\&S products:
Pollution severity 2, overvoltage category 2, IP degree of protection 2X, altitude max. 2000 m .
The unit may be operated only from supply networks fused with max. 16 A.
2. For measurements in circuits with voltages $\mathrm{V}_{\mathrm{rms}}$ $>30 \mathrm{~V}$, suitable measures should be taken to avoid any hazards.
(using, for example, appropriate measuring equipment, fusing, current limiting, electrical separation, insulation).
3. If the unit is to be permanently wired, the PE terminal of the unit must first be connected to the PE conductor on site before any other connections are made (installation and cabling of the unit to be performed only by qualified technical personnel).
4. For permanently installed units without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused such as to provide suitable protection for the users and equipment.
5. Prior to switching on the unit, it must be ensured that the nominal voltage set on the unit matches the nominal voltage of the AC supply network.
If a different voltage is to be set, the power fuse of the unit may have to be changed accordingly.
6. Units of protection class I with disconnectible AC supply cable and appliance connector may be operated only from a power socket with earthing contact and with the PE conductor connected.
7. It is not permissible to interrupt the PE conductor intentionally, neither in the incoming cable nor on the unit itself as this may cause the unit to become electrically hazardous.

Any extension lines or multiple socket outlets used must be checked for compliance with relevant safety standards at regular intervals.
8. If the unit has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from the AC supply.
If units without power switches are integrated in racks or systems, a disconnecting device must be provided at system level.
9. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.
Prior to performing any work on the unit or opening the unit, the latter must be disconnected from the supply network.
Any adjustments, replacements of parts, maintenance or repair may be carried out only by authorized R\&S technical personnel.
Only original parts may be used for replacing parts relevant to safety (eg power switches, power transformers, fuses). A safety test must be performed after each replacement of parts relevant to safety.
(visual inspection, PE conductor test, insulationresistance, leakage-current measurement, functional test).
10. Ensure that the connections with information technology equipment comply with IEC950/EN60950.
11. Equipment returned or sent in for repair must be packed in the original packing or in packing with electrostatic protection.
12. Any additional safety instructions given in this manual are also to be observed.

Safety-related symbols used on equipment and documentation from R\&S:

Safety Instructions

The instrument contains components which are hazardous to electrostatic exposure and which are marked by the following symbol:

- To avoid damage of electronic components, the operational site must be protected against electrostatic discharge (ESD).

The following two methods of ESD protection may be used together or separately:

- Wrist strap with cord to ground connection
- Conductive floor mat and heel strap combination

The batteries used in the instrument are high-power lithium cells with a life utility of approx. 5 years. If you do not handle them properly, there is a danger of explosion. Therefore, observe the following safety instructions:

- Avoid short-circuit and loading of the battery
- Do not expose lithium batteries to high temperature or fire.
- Do not open used batteries
- Keep batteries away from children.
- Replace battery only by R\&S type battery (R\&S ordering number 0565.1687.00)
- Make sure to connect the battery to the appropriate terminals when replacing
- Lithium batteries are suitable for environmentally-friendly disposal or specialized recycling. Dispose them into appropriate containers, only.

- Put the instrument on the front handles before loosing the rear feet and the tube to avoid damage of the instrument.
- When mounting the tube take care not to damage or pull off cables.
Contents - Chapter 1 "Performance Test"
1 Performance Test 1.1
Test Instructions 1.1
Measuring Equipment and Accessories 1.1
Performance Test FSU 1.3
Checking the Reference Frequency Accuracy 1.3
Checking Imunity to Interference 1.3
$1^{\text {st }}$ IF Image Frequency Rejection 1.4
$2^{\text {nd }}$ IF Image Frequency Rejection 1.4
$3^{\text {rd }}$ IF Image Frequency Rejection 1.4
$1^{\text {st }}$ IF Rejection 1.5
$2^{\text {nd }}$ IF Rejection 1.5
Checking Non-linearities 1.6
Third-Order Intercept Point 1.6
Second-Order Harmonic Distortion 1.7
Checking IF Filters 1.8
Checking the bandwidth switching level accuracy. 1.8
Checking Bandwidth 1.9
Checking the Shape Factor 1.9
Checking Noise Display 1.10
Checking the Level accuracy and the Frequency Response 1.11
Checking the Display Linearity 1.14
Checking the RF Attenuator. 1.15
Checking the Reference Level Switching (IF-Gain) 1.16
Checking the Phase Noise 1.18
Checking the Return Loss at the RF Input 1.20
Performance Test Option Electronic Attenuator- FSU-B25 1.23
Checking Noise Display with Preamplifier (B25) 1.23
Checking the Level accuracy and the Frequency Response with Preamplifier 1.24
Checking the Frequency Response with Electronic Attenuator 1.27
Checking Non-linearities with Electronic Attenuator. 1.29
Third-Order Intercept 1.29
Checking the RF Attenuator (with Option B25) 1.30
Checking the electronic Attenuator accuracy 1.31
Performance Test Report FSU 1.32
Performance Test Report Option FSU-B25 1.46

This page is left blank intentionally.

1 Performance Test

Test Instructions

- The rated specifications of the analyzer are tested after a warm-up time of at least 15 minutes and overall calibration. Only in this case can the compliance with the guaranteed data be ensured. Starting of overall adjustment: [CAL : CAL TOTAL]
- If nothing else specified, all measurements will be done with external reference frequency.
- Values given in the following sections are not guaranteed. Only the technical specifications of the data sheet are binding.
- The values given in the datasheet are the guaranteed limits. Due to measurement errors these limits must be extended by the tolerance of the measuring equipment used in this performance test.
- Inputs for settings during measurements are shown as following:

$[<K E Y>]$	Press a key on the front panel, eg [SPAN]
$[<$ SOFTKEY $>]$	Press a softkey, eg [MARKER $->$ PEAK]
$[<$ nn unit $>]$	Enter a value and terminate by entering the unit, eg [12 kHz]
Successive entries are separated by [:], eg. [BW : RES BW MANUAL : $\mathbf{3} \mathbf{~ k H z}]$	

Measuring Equipment and Accessories

Item	Type of equipment	Specifications recommended	Equipment recommended	R\&S Order No.	Use
1	Frequency counter	$\begin{aligned} & \text { accuracy }<1 \times 10^{-9}, \\ & \text { frequency range up to } 10 \mathrm{MHz} \end{aligned}$	Advantest R5361B with option 23		Frequency Accuracy of Reference Oscillator
2	Signal generator	FSU 3 / FSU 8: 10 MHz - 13 GHz FSU 26: $10 \mathrm{MHz}-26.5 \mathrm{GHz}$	SMP02 SMP03	$\begin{aligned} & 1035.5005 .02 \\ & 1035.5005 .03 \end{aligned}$	Immunity to Interference Third-Order Intercept Frequency Response
3	Signal generator	$1 \mathrm{MHz}-3.6 \mathrm{GHz}$ Phase noise at 640 MHz : $\begin{aligned} & <-100 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{~Hz} \\ & <-115 \mathrm{dBc} / \mathrm{Hz} @ 1 \mathrm{kHz} \\ & <-127 \mathrm{dBc} / \mathrm{Hz} @ 10 \mathrm{kHz} \\ & <-130 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{kHz} \\ & <-142 \mathrm{dBc} / \mathrm{Hz} @ 1 \mathrm{MHz} \end{aligned}$	SMHU	0835.8011.52	Calibration Source 128 MHz 2nd-Order Harmonic Dist. Third-Order Intercept IF Filters Frequency Response Display Linearity RF Attenuator Reference Level Switching Phase Noise
4	Signal generator	FSU 8: 3.6 GHz to 8 GHz	SMP02	1035.5005.02	Third-Order Intercept
5	3 or $6-\mathrm{dB}$ coupler (power combiner)	FSU 3: 10 MHz to 3.6 GHz FSU 8: 10 MHz to 8 GHz FSU 26: 10 MHz to 26.5 GHz			Third-Order Intercept
6	6-dB divider (power splitter)	level imbalance 10 MHz to $2.2 \mathrm{GHz} \leq 0.10 \mathrm{~dB}$ 2.2 GHz to $7 \mathrm{GHz} \leq 0.2 \mathrm{~dB}$ 7 GHz to $18 \mathrm{GHz} \leq 0.3 \mathrm{~dB}$ 18 GHz to $26.5 \mathrm{GHz} \leq 0.4 \mathrm{~dB}$ FSU 3: $\quad 10 \mathrm{MHz}$ to 3.6 GHz FSU 8: $\quad 10 \mathrm{MHz}$ to 8 GHz FSU 26: $\quad 10 \mathrm{MHz}$ to 26.5 GHz			Frequency Response

Item	Type of equipment	Specifications recommended	Equipment recommended	R\&S Order No.	Use
7	$50-\Omega$ termination	Return loss $\begin{array}{ll} \mathrm{F}<1 \mathrm{GHz} & >-20 \mathrm{~dB} \\ \mathrm{~F}>1 \mathrm{GHz} & >-10 \mathrm{~dB} \end{array}$ FSU 3: \quad to 3.6 GHz FSU 8: \quad to 8 GHz FSU 26: to 26.5 GHz	RNA RNA Wiltron 28S50	$\begin{aligned} & 0272.4510 .50 \\ & 0272.4510 .50 \end{aligned}$	Noise Display
8	Power meter		NRVD	0857.8008.02	Frequency Response
9	Power sensor	$\begin{aligned} & 1 \mathrm{MHz} \text { to } 3.6 \mathrm{GHz} \\ & \mathrm{RSS} \leq 0.8 \% \\ & \text { Meter noise } \leq 20 \mathrm{pW} \end{aligned}$	NRV-Z4 or NRV-Z51	$\begin{aligned} & 0828.3618 .02 \\ & 0857.9004 .02 \end{aligned}$	Frequency Response
10	Power sensor	RSS referred to indicated Power: $\begin{array}{ll} 3.6 \mathrm{GHz} \text { to } 7 \mathrm{GHz} & \leq 2 \% \\ 7 \mathrm{GHz} \text { to } 26.5 \mathrm{GHz} & \leq 3.5 \% \end{array}$ FSU 8: $\quad 3.6 \mathrm{GHz}$ to 8 GHz FSU 26: 3.6 GHz to 26 GHz	$\begin{aligned} & \text { NRV-Z2 } \\ & \text { NRV-Z6 } \end{aligned}$	$\begin{aligned} & 0828.3218 .02 \\ & 1081.2005 .02 \end{aligned}$	Frequency Response
11	Step attenuator	variable attenuation 0 dB to $100 \mathrm{~dB}, 1-\mathrm{dB}$ steps attenuation accuracy $<0.1 \mathrm{~dB}(\mathrm{f}=5 \mathrm{MHz})$	RSP	0831.3515.02	Reference Level Switching Display Linearity RF Attenuator
12	Attenuator (2 x)	fixed attenuation 10 dB FSU 3: 10 MHz to 3.6 GHz FSU 8:: 10 MHz to 8 GHz	$\begin{aligned} & \text { DNF } \\ & \text { DNF } \end{aligned}$	$\begin{aligned} & 0272.4210 .50 \\ & 0272.4210 .50 \end{aligned}$	Third-Order Intercept
13	Lowpass ${ }^{1)}$	$\begin{aligned} & \text { cut-off frequency: } \\ & 28 \mathrm{MHz}, 107 \mathrm{MHz}, 262 \mathrm{MHz}, 640 \\ & \mathrm{MHz}, 1000 \mathrm{MHz}, \\ & 1700 \mathrm{MHz} \end{aligned}$			$2^{\text {nd }}$-Order Harmonc Dist.
14	VSWR-Bridge	FSU 3: 10 MHz to $3,6 \mathrm{GHz}$ FSU 8: 10 MHz to 8 GHz	ZRC Wiltron 87A50 with adapter 34AN50, Open/Short 22NF50	1039.9492.55	VSWR FSU 3 and FSU 8
15	Network Analyzer	FSU 26: 10 MHz to 26.5 GHZ	ZVK		VSWR FSU 26, or as alternative to 14

[^0]
Performance Test FSU

Checking the Reference Frequency Accuracy

Test equipment:	Frequency counter (Section "Measurement Equipment", item 1): accuracy $<1 \times 10^{-9}$ frequency range up to 10 MHz
Test setup:	connect frequency counter to $10-\mathrm{MHz}$ reference output of the FSU (rear panel)
FSU settings:	- [SETUP : REFERENCE INT / EXT] toggle to internal reference (INT)
Measurement:	> measure frequency with frequency counter nominal frequency: model without option FSU-B4 \qquad . $10 \mathrm{MHz} \pm 1 \mathrm{~Hz}$ model with option FSU-B4 \qquad $.10 \mathrm{MHz} \pm 0.3 \mathrm{~Hz}$
Note:	The frequency of the reference oscillator can be adjusted by means of a

Checking Imunity to Interference

Test equipment:

Signal generator (Section "Measurement Equipment", item 2):		
frequency range	FSU 3:	10 MHz to 13 GHz
	FSU 8:	10 MHz to 13 GHz
	maximum level	$\geq 0 \mathrm{dBm}$

Test setup:
$>$ connect RF output of the signal generator to RF input.
Signal generator settings:
Level: adjust the output level of signal generator for an RF-Input level of 0 dBm

FSU settings:

```
- [ PRESET]
- [ AMPT : RF ATTEN MANUAL : O dB ]
- [ AMPT : REF LEVEL : -30 dBm ]
- [ SPAN : }100\mathrm{ kHz ]
- [ BW : RES BW MANUAL : 3 kHz ]
```


$1^{\text {st }}$ IF Image Frequency Rejection

Additional signal generator	- frequency $\quad f_{\text {in }}+9256.8 \mathrm{MHz}$
settings:	
Additional FSU settings:	$-\left[\right.$ FREQ : CENTER $\left.:\left\{\mathrm{f}_{\text {in }}\right\}\right]$
	See table of performance test report for values of $f_{\text {in }}$
Measurement:	$>$ Set marker to peak of signal
	$[$ MKR $\Rightarrow:$ PEAK $]$

Evaluation: The image frequency rejection is the difference between the output level of the signal generator and the level reading of marker 1 ($\mathrm{L}_{\text {dis }}$): Image frequency rejection $=0 \mathrm{dBm}-\mathrm{L}_{\text {dis }}$

$2^{\text {nd }}$ IF Image Frequency Rejection

Additional signal generator settings:	- frequency $\quad f_{\text {in }}+808.8 \mathrm{MHz}$
Additional FSU settings:	- [FREQ : CENTER : \{fin ${ }_{\text {in }}$]
	See table of performance test report for values of f_{in}.
Measurement:	Set marker to peak of signal [MKR \Rightarrow : PEAK]
Evaluation:	The image frequency rejection is the difference between the output level of the signal generator and the level reading of marker 1 ($\mathrm{L}_{\text {dis }}$): Image frequency rejection $=0 \mathrm{dBm}-\mathrm{L}_{\text {dis }}$

$3^{\text {rd }}$ IF Image Frequency Rejection

Additional signal generator settings:

Additional FSU settings:

Measurement:

Evaluation:

- frequency $\quad f_{\text {in }}+40.8 \mathrm{MHz}$
- [FREQ : CENTER : \{fin\}]

See table of performance test report for values of $f_{\text {in }}$.
> Set marker to peak of signal [MKR \Rightarrow : PEAK]

The image frequency rejection is the difference between the output level of the signal generator and the level reading of marker 1 ($L_{\text {dis }}$): Image frequency rejection $=0 \mathrm{dBm}-\mathrm{L}_{\text {dis }}$

$1^{\text {st }}$ IF Rejection

$2^{\text {nd }}$ IF Rejection

Checking Non-linearities

Third-Order Intercept Point

Test equipment:

- 2 signal generators	
FSU 3:	Section "Measurement Equipment", item 2 and 3
FSU 8, FSU 26	Section "Measurement Equipment", item 2, 3, 4
frequency range:	
FSU 3:	10 MHz to 3.6 GHz
FSU 8:	10 MHz to 8 GHz
FSU 26:	10 MHz to 26.5 GHz

- 2 attenuators (Section "Measurement Equipment", item 12)
attenuation $\quad a_{\text {ATT }}=10 \mathrm{~dB}$
frequency range
FSU 3: $\quad 10 \mathrm{MHz}$ to 3.6 GHz
FSU 8: $\quad 10 \mathrm{MHz}$ to 8 GHz
FSU 26: $\quad 10 \mathrm{MHz}$ to 26.5 GHz
- power combiner (Section "Measurement Equipment", item 5) frequency range

FSU 3: $\quad 10 \mathrm{MHz}$ to 3.6 GHz
FSU 8: $\quad 10 \mathrm{MHz}$ to 8 GHz
FSU 26: $\quad 10 \mathrm{MHz}$ to 26.5 GHz

Test setup:	Connect RF outputs of the signal generators via $10-\mathrm{dB}$ attenuators to the inputs of the combiner
	> Connect output of the combiner to the RF input of the FSU.
Signal generator settings: (both generators)	- frequency: generator $1 \quad f_{g 1}=f_{\text {in }}-50 \mathrm{kHz}$ generator $2 \quad f_{g 2}=f_{i n}+50 \mathrm{kHz}$
	See table of performance test report for values of $f_{\text {in }}$ Adjust the output level of the signal generators for an input level at the FSU of -10 dBm . Switch off the ALC of the generators to reduce the interference between the generators
FSU settings:	- [PRESET] - [AMPT : RF ATTEN MANUAL: 0 dB] - [AMPT: $\mathbf{0} \mathbf{d B m}$] - [SPAN : 500 kHz] - [BW : RES BW MANUAL : 3 kHz] - [FREQ : CENTER : $\left\{\mathrm{f}_{\mathrm{in}}\right\}$]
	See table of performance test report for values of $f_{\text {in }}$
Measurement	> [MKR FCTN : TOI]
Evaluation:	The third order intercept point (T.O.I) referred to the input signal is displayed in the marker field by the reading [TOI].

Second-Order Harmonic Distortion

Test equipment:	- Signal generator (Section "Measurement Equipment",
	frequency range: $\quad 9 \mathrm{kHz}$ to 1.8 GHz
	Recommended harmonic suppression:
	$\mathrm{f}<100 \mathrm{MHz}$: $\quad>35 \mathrm{dBc}$
	$100 \mathrm{MHz}<\mathrm{f}<1 \mathrm{GHz}$: $\quad>45 \mathrm{dBc}$
	$\mathrm{f}>1 \mathrm{GHz}: \quad>35 \mathrm{dBc}$
	In order to improve the harmonic suppression of recommended to insert a lowpass filter with a suitabl (Section "Measurement Equipment", item 13) after the
Test setup:	> connect RF output of signal generator to the input of
	> connect the output of the lowpass to the RF input of
Note:	If the harmonic suppression of the signal generato lowpass can be left out.
	The RF output of the generator can be connected dire of the FSU in this case.
Signal generator settings:	
	- frequency: $f_{\text {in }}$
	see table of performance test report for values of $\mathrm{f}_{\text {in }}$
FSU settings:	- [PRESET]
	-[AMPT : RF ATTEN MANUAL : 0 dB]
	- [AMPT : 0 dBm]
	- [SPAN: 3 kHz]
	- [BW : RES BW MANUAL : $1 \mathbf{k H z}$]
	- [FREQ : CENTER : $\left\{\mathrm{f}_{\text {in }}\right\}$]
	See table of performance test report for values of $\mathrm{f}_{\text {in }}$
Measurement:	set marker to peak of signal - [MKR \Rightarrow : PEAK]

The level of the input signal $L_{\mathbb{I}}$ is displayed by the marker reading for marker 1.
$>$ set center frequency of the FSU to the frequency of the 2nd harmonic

- [FREQ : CENTER : $\left\{2 \mathrm{xf} \mathrm{f}_{\mathrm{in}}\right\}$]

Measurement:

Evaluation:
set marker to peak of the 2nd harmonic

- [MKR \Rightarrow : PEAK]

The level of the harmonic signal $\mathrm{L}_{\mathrm{K} 2}$ is displayed by the marker reading for marker 1 .

The second order harmonic distortion can be calculated as
$I_{\text {k } 2} / d B m=\left(L_{i N}-L_{\text {K2 }}\right)+L_{I N}$

Checking IF Filters

Test equipment:	$\begin{array}{ll} \text { Signal generator (Section "Measurement Equipment", item 3): } \\ \text { frequency } & 128 \mathrm{MHz} \\ \text { level } & \geq 0 \mathrm{dBm} \end{array}$
Test setup:	> connect RF output of the signal gene

Checking the bandwidth switching level accuracy

Reference measurement (RBW 10 kHz)

Checking Bandwidth

Signal generator settings:	- frequency: 128 MHz - level:-10 dBm
FSU settings:	- [PRESET]
	- [AMPT : RF ATTEN MANUAL : 10 dB]
	- [AMPT : 0 dBm]
	- [FREQ : CENTER : 128 MHz]
	- [BW : COUPLING RATIO : SPAN/RBW MANUAL : 3 : ENTER]
	> Determine 3-dB-Bandwith
	- [MKR FCTN : N DB DOWN : 3 dB]
	- [SPAN : $\{3 \times$ RBW $\}]$
	See table of performance test report for values of RBW.

Note:
 To check the filters > 3 MHz , the resolution bandwidth has to be set

 manually to X MHz . All other bandwidths will be set automatically by changing the span.- [BW : RES BW MANUAL : X MHz] , with $X=5,10,20$ or 50 MHz

Measurement:

- [MKR \Rightarrow : PEAK]

The $3-\mathrm{dB}$ bandwidth is displayed by the reading ' BW \{bandwidth\}'.

Checking the Shape Factor

Note: \quad To check the shape factor the values of the $3 d B$ bandwith will be needed. Please check before this measurement.

Signal generator settings: - frequency: 128 MHz

- level:0 dBm

FSU settings:

- [PRESET]
- [AMPT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{~ d B}$]
- [AMPT : $\mathbf{0} \mathbf{d B m}$]
- [FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$]
- [BW : COUPLING RATIO : SPAN/RBW MANUAL : 20 ENTER]
- [BW : COUPLING RATIO : RBW/VBW NOISE [10]]
- [MKR FCTN : N DB DOWN : $\mathbf{6 0} \mathbf{d B}$]
- [SPAN : \{20 x RBW\}]

See table of performance test report for values of RBW.

Note:	To check the filters > 3 MHz , the resolution bandwidth has to be set manually to $X \mathrm{MHz}$. All other bandwidths will be set automatically by changing the span. - [BW : RES BW MANUAL : X MHz], with $\mathrm{X}=5,10,20$ or 50 MH
Measurement:	- [MKR \Rightarrow : PEAK]
	The 60 dB bandwidth is displayed by the reading 'BW \{bandwidth\}'.
Evaluation:	The shape factor is calculated by BW (60dB) / BW (3dB).

Checking Noise Display

Test equipment:
$50-\Omega$ termination (Section "Measurement Equipment", item 7) frequency range

FSU 3:	DC to 3.6 GHz
FSU 8:	DC to 8 GHz
FSU 26:	DC to 26.5 GHz

Test setup:
$>$ terminate the RF input of the FSU with 50Ω

Set the marker to the center frequency for the value below or equal 1 kHz .
Read out the mean marker for frequencies above 1 kHz and correct the measurement value by -20 dB for the ratio of $10 \mathrm{~Hz} / 1 \mathrm{kHz}$.

Note: For example the DANL in 1 kHz bandwidth -126 dBm results in a corrected value of -146 dBm in 10 Hz bandwidth.
As both filter - design's are digitally and useing the same hardware setting, the DANL can be measured also with 1 kHz bandwidth to reduce measurement time.

Evaluation: \quad The noise level is displayed by the level reading of marker 1.

Frequency	$<10 \mathrm{kHz}$	$<100 \mathrm{kHz}$	$<1 \mathrm{MHz}$	$<10 \mathrm{MHz}$	$>10 \mathrm{kHz}$
RefLev	-10 dBm	-20 dBm	-30 dBm	-60 dBm	-60 dBm

Checking the Level accuracy and the Frequency Response

Test equipment:

Determining the level accuracy at 128 MHz

Test setup:	connect power sensor (item 9) to the power meter and execute function 'ZERO' when there is no signal applied to the power sensor connect power sensor to RF output of signal generator
Signal generator settings:	- frequency 128 MHz - level -30 dBm
Measurement:	> determine output power of the signal generator with the power meter > connect RF output of the signal generator to RF input of the FSU
FSU settings:	- [PRESET] - [AMPT : RF ATTEN MANUAL : 10 dB] - [AMPT : -30 dBm] - [SPAN : 30 kHz] - [BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$] - [TRACE : DETECTOR : RMS] - [FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$] set marker to peak of signal [MKR \Rightarrow : PEAK]
Evaluation:	The difference between the signal levels measured with the power meter and the FSU (level reading of marker 1) reflects the absolute level accuracy of the FSU. It can be calculated as: Level accuracy ${ }_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSU }}-\mathrm{L}_{\text {powermeter }}$

Checking the frequenc	
Test setup:	> connect RF output of the signal generator to input of the divider > connect output 1 of the divider to the power sensor / power meter > connect output 2 of the divider to RF input of the FSU
Signal generator settings:	- level 0 dBm - frequency 128 MHz
FSU settings:	- [PRESET] - [AMPT : RF ATTEN MANUAL : 10 dB] - [AMPT : $\mathbf{0 d B m}$] - [SPAN : $\mathbf{1 0 0} \mathbf{~ k H z}$] - [BW : RES BW MANUAL : $\mathbf{1 0} \mathbf{~ k H z}$] - [TRACE : DETECTOR : RMS] - [FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$]
Reference measurement:	> Determine signal level L \qquad > set marker to peak of signal - [MKR \Rightarrow : PEAK] The signal level $\mathrm{L}_{\text {FSU }}$ is displayed by the level reading of marker 1 . $\operatorname{Ref}_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSU }}-L_{\text {powermeter }}$
Measurement Signal generator settings:	- frequency $\quad f_{\text {fresp }}$ see table of performance test report for values of $f_{\text {fresp }}$
Power meter settings:	Determine signal level L \qquad To achive higher accuracy it is Recommended to compensate the frequency response of the power sensor.
FSU settings:	- [FREQ : CENTER : \{frresp $\}$] see table of performance test report for values of $f_{\text {fresp }}$ > - set marker to peak of signal - [MKR \Rightarrow : PEAK] The signal level $L_{\text {Fsu }}$ is displayed by the level reading of marker 1 .
Evaluation:	The frequency response can be calculated as: Frequency response $=L_{\text {FSU }}-L_{\text {powerneter }}-\operatorname{Ref}_{128 \mathrm{MHz}}$

Checking the Display Linearity

Test equipment:	- Signal generator (Section "Measurement Equipment", item 3) frequency $\quad 5 \mathrm{MHz}{ }^{1)}$ maximum level $\geq 10 \mathrm{dBm}$ - step attenuator (Section "Measurement Equipment", item 11) frequency $5 \mathrm{MHz}^{1)}$ attenuation $\quad 0$ to 100 dB in 1 dB steps attenuation accuracy $<0.1 \mathrm{~dB}$
Test setup:	connect RF output of the signal generator to RF input of the step attenuator connect RF output of the step attenuator to RF input of the FSU
Signal generator settings:	- frequency $5 \mathrm{MHz}{ }^{1)}$ - level +10 dBm
Step attenuator settings:	Attenuation 20 dB
FSU settings:	- [PRESET] - [AMPT : RF ATTEN MANUAL : 10 dB] - [AMPT : $\mathbf{0} \mathbf{d B m}$] - [FREQ :CENTER : $5 \mathbf{M H z}$] - [SPAN : 0 Hz] - [TRACE : DETECTOR : RMS] 1.Measurement: - [BW : RES BW MANUAL : $\mathbf{5 0 0} \mathbf{~ H z}$] 2.Measurement: - [BW : RES BW MANUAL : $\mathbf{3 0 0} \mathbf{~ k H z ~] ~}$ 3.Measurement: - [BW : RES BW MANUAL : $\mathbf{2 0} \mathbf{~ M H z}$]
Reference measurement:	> set marker to peak of signal - [MKR \Rightarrow : PEAK] > set reference to peak of signal - [MKR : REFERENCE FIXED]

Measurement

Step attenuator settings:	Attenuation $\quad\left\{a_{\mathrm{ATT}}\right\}$ See table of performance test report for values of $\mathrm{a}_{\mathrm{ATT}}$.
Evaluation:	The difference between the level of the input signal of the FSU and the reference (about 10 dB below the reference level) is displayed in the marker field by the reading 'Delta [T1 FXD]'.

[^1]
Checking the RF Attenuator

Test equipment:	- Signal generator (Section "Measurement Equipment", item 3) frequency $\quad 128 \mathrm{MHz}$ maximum level $\quad \geq 0 \mathrm{dBm}$ - step attenuator (Section "Measurement Equipment", item 11) frequency attenuation attenuation accuracy
Test setup:	> connect RF output of the signal generator to RF input of the step attenuator connect RF output of the step attenuator to RF input of the FSU
Signal generator settings:	- Frequency 128 MHz - Level 0 dBm
Step attenuator settings:	Attenuation 70 dB
FSU settings:	- [PRESET] - [FREQ : CENTER : $\mathbf{1 2 8} \mathbf{~ M H z}$] - [SPAN : 500 Hz] - [BW : RES BW MANUAL : $\mathbf{1} \mathbf{~ k H z}$] - [TRACE : DETECTOR : RMS] - [BW : VIDEO BW MANUAL : $\mathbf{1 0 0 ~ H z}$] - [AMPT : RF ATTEN MANUAL : $\mathbf{1 0 ~ d B}$] - [AMPT : -30 dBm]
Reference measurement:	set marker to peak of signal - [MKR \Rightarrow : PEAK] > set reference to peak of signal - [MKR : REFERENCE FIXED]
Measurement	
Step attenuator settings:	Attenuation $\quad\left\{80 \mathrm{~dB}-\mathrm{a}_{\text {FSU }}\right\}$ See table below for values of $\mathrm{a}_{\text {AtT }}$.
FSU settings:	- [AMPT : RF ATTEN MANUAL : $\left\{\mathrm{a}_{\text {FSU }}\right\}$] - [AMPT : $\left\{-40 \mathrm{dBm}+\mathrm{a}_{\mathrm{FSU}}\right\}$ dBm] - [MKR \Rightarrow : PEAK] see table below for values of $a_{\text {FSU }}, a_{\text {ATT }}$ and reference level.
Evaluation:	The difference between the level of the input signal of the FSU and the reference (at 10 dB RF-Attenuation) is displayed in the marker field by the reading 'Delta [T1 FXD]'.

$\mathbf{a}_{\text {ATt }}$	80 dB	75 dB	70 dB	60 dB	40 dB
$\mathbf{a}_{\text {FSU }}$	0 dB	5 dB	10 dB	20 dB	40 dB
reference level	-40 dBm	-35 dBm	-30 dBm	-20 dBm	0 dBm

Checking the Reference Level Switching (IF-Gain)

Test principle:	The IF gain of the FSU can be switched from 0 to 50 dB by changing the reference level at fixed RF attenuation. To prevent the IF gain accuracys to be mixed up with the log amplifier accuracy it is determined by comparison using an external precision attenuator.
Test equipment:	$\begin{array}{ll}\text { - } \quad \begin{array}{l}\text { Signal generator (Section "Measurement Equipment", item 3) } \\ \text { frequency } \\ \text { maximum level }\end{array} & 5 \mathrm{MHz} \\ & \geq-10 \mathrm{dBm}\end{array}$
Test setup:	connect RF output of the signal generator to RF input of the step attenuator
	> connect RF output of the step attenuator to RF input of the FSU
Signal generator settings:	- frequency $\quad 5 \mathrm{MHz}$
	- level $\quad-10 \mathrm{dBm}$
Step attenuator settings:	Attenuation 20 dB
FSU settings:	- [PRESET]
	- [FREQ : CENTER : 5 MHz]
	- [SPAN : $\mathbf{2}$ kHz]
	- [BW : RES BW MANUAL : 1 kHz]
	- [BW : VIDEO BW MANUAL : $\mathbf{1 0 0 ~ H z ~] ~}$
	- [TRACE : DETECTOR : RMS]
	- [AMPT : RF ATTEN MANUAL : 10 dB]
	- [AMPT : -10 dBm]
Reference measurement:	set marker to peak of signal - [MKR \Rightarrow : PEAK]
	set reference to peak of signal - [MKR : REFERENCE FIXED]

Measurement

Step attenuator settings:

FSU settings:

Attenuation $\quad\left\{\mathrm{a}_{\mathrm{ATT}}\right\}$
See table below for values of $\mathrm{a}_{\text {Att }}$.

- [AMPT : \{reference level\} dBm]
see table below for values of reference level.
- [MKR \Rightarrow : PEAK]

Evaluation: The difference between the level of the input signal of the FSU and the reference (at 10 dB IF-Gain) is displayed in the marker field by the reading 'Delta [T1 FXD]'.

10-dB gain steps:

$\mathbf{a}_{\text {ATt }}$	10 dB	20 dB	30 dB	40 dB	50 dB	60 dB
reference level	0 dBm	-10 dBm	-20 dBm	-30 dBm	-40 dBm	-50 dBm

1-dB gain steps:

$\boldsymbol{a}_{\mathrm{ATt}}$	20 dB	21 dB	22 dB	23 dB	24 dB	25 dB	26 dB	27 dB	28 dB	29 dB
reference level	-10 dBm	-11 dBm	-12 dBm	-13 dBm	-14 dBm	-15 dBm	-16 dBm	-17 dBm	-18 dBm	-19 dBm

Checking the Phase Noise

> set Phase Noise Marker
[MKR : MARKER 2 : \{offset\}]
see table below for values of offset.
Note: Please make sure not to measure on a spurious signal.

Evaluation:
The Phase Noise is displayed in the marker field by the reading 'Delta 2 [T1 PHN]'.

Phase noise measurement settings				
Offset	Span	RBW	Reference Level	$\mathbf{a}_{\text {fsu }}$
100 Hz	20 Hz	30 Hz	0 dBm	10 dB
1 kHz	200 Hz	100 Hz	0 dBm	10 dB
10 kHz	2 kHz	300 Hz	0 dBm	10 dB
100 kHz	10 kHz	3 kHz	-10 dBm	0 dB
1 MHz	100 kHz	30 kHz	-30 dBm	0 dB

Note: \quad To obtain a precise measurement of the phase noise at high offsets the level used at the FSU input is 10 to 30 dB higher than the reference level. To reduce the measurement time the phase noise is measured with a small span around the frequency offset. This prevents the FSU from being overloaded.

Checking the Return Loss at the RF Input

Note: For FSU 3 or FSU 8 as alternative to the VSWR bridge a network analyzer (item 14a) can be used also. For FSU 26 it is recommanded to use a network analyzer for better accuracy.

Test equipment:
FSU 3 / FSU 8:

- Signal generator (Section "Measurement Equipment", item 2)

frequency range	FSU 3:	10 MHz bis $3,6 \mathrm{GHz}$
	FSU 8	10 MHz bis 8 GHz
level range		$\geq-10 \mathrm{dBm}$

- power meter (Section "Measurement Equipment", item 8)
- power sensor
frequency range \quad FSU 3: 10 MHz to $3,6 \mathrm{GHz}$
FSU $8 \quad 10 \mathrm{MHz}$ to 8 GHz
- SWR-bridge (Section "Measurement Equipment", item 14)
frequency range \quad FSU 3: $\quad 10 \mathrm{MHz}$ to $3,6 \mathrm{GHz}$
FSU $8 \quad 10 \mathrm{MHz}$ to 8 GHz

Test setup:
FSU 3 / FSU 8:

FSU 26 :
Connect the network analyzer to the RF input of the FSU

Signal generator settings:

FSU settings:

Calibration:

- level	-10 dBm
- frequency	$\left\{\mathrm{f}_{\mathrm{in}}\right\}$

See performance test report for values of $f_{i n}$.

- [SYSTEM PRESET]
- [INPUT : RF ATTEN MANUAL : $\mathbf{1 0} \mathbf{~ d B}$]

FSU 3 / FSU 8:
Use total reflection (OPEN or SHORT) at the test port of the SWR bridge as a reference:

Remove cable from RF input of the FSU and connect precision short or open to the cable. Determine reflected power with the power meter and store measured level LRef as reference. Repeat this procedure for every measurement over the whole frequency range.

FSU 3 / FSU 8:
Connect the RF input of the FSU to the test port of the SWR bridge.
Measure reflected power L_{r} with the power meter. The return loss a_{r} of
the RF input of the FSE can be calculated as:

$$
a_{r}=L_{\text {Ref }}-L_{r} .
$$

The VSWR can be calculated as:

$$
s=\frac{10^{0.05 a_{r}}+1}{10^{0.05 a_{r}}-1}
$$

FSU 26:
Determine S_{11} of the FSU at the frequencies shown in the performance test report. See operating manual of the network analyzer for detailed information about S_{11} measurement.

This page is left blank intentionally.

Performance Test Option Electronic Attenuator- FSU-B25

Comment: With FSU 26 the option B25 is implemented in the signal path below 3.6 GHz . Therefore the measurements are done up to 3.6 GHz only.

Checking Noise Display with Preamplifier (B25)

Test equipment:	$50-\Omega$ termination (Section "Measurement Equipment", item 7)
	frequency range: FSU 3, FSU 26 to 3.6 GHz FSU 8 to 8 GHz
Test setup:	> terminate the RF input of the FSU with 50Ω
FSU settings:	- [PRESET] - [AMPT : RF ATTEN MANUAL : $\mathbf{0}$ dB] - [SPAN : 0 Hz] - [BW : RES BW MANUAL : $\mathbf{1 0 ~ H z}$] - [BW : VIDEO BW MANUAL : 1 Hz] - [BW : SWEEP TIME MANUAL : $\mathbf{0 . 1} \mathbf{s}$] - [TRACE 1 : AVERAGE] - [TRACE 1 : SWEEP COUNT : 30 ENTER] - [AMPT : - $\mathbf{8 0}$ dBm] - [SETUP : PREAMP ON] - [FREQ : CENTER : $\left.\left\{f_{n}\right\}\right]$
Measurement:	> set marker to peak - [MKR \Rightarrow : PEAK]
Evaluation:	The noise level is displayed by the level reading of marker 1.

Checking the Level accuracy and the Frequency Response with Preamplifier

Test equipment:

```
- Signal generator :
    FSU 3, FSU 26: Section "Measurement Equipment", item 3
    FSU 8: Section "Measurement Equipment", item 3 and 4
    frequency range:
                FSU 3, FSU 26: 10 MHz to 3.6 GHz
        FSU 8: }\quad10\textrm{MHz}\mathrm{ to }8\textrm{GHz
    maximum level }\quad\geq0\textrm{dBm
- power meter (Section "Measurement Equipment", item 8)
- power sensor:
    FSU 3, FSU 26:Section "Measurement Equipment", item 9
    FSU 8: Section "Measurement Equipment", item 9 and 10
    frequency range:
                FSU 3, FSU 26: 10 MHz to 3.6 GHz
                FSU 8: }\quad10\textrm{MHz}\mathrm{ to }8\textrm{GHz
    maximum power }\mp@subsup{P}{\mathrm{ max }}{}\geq100\mu\textrm{W
        impedance Z = 50 \Omega
-6-dB divider (Section "Measurement Equipment", item 6)
    frequency range:
                FSU 3, FSU 26: 10 MHz to 3.6 GHz
                FSU 8: }\quad10\textrm{MHz}\mathrm{ to }8\textrm{GHz
    level imbalance }\mp@subsup{}{}{1}\mathrm{ ) }\quad1\textrm{MHz}\mathrm{ to 1 GHz }\quad\leq0.1\textrm{dB
                            1GHz to 8 GHz }\leq0.2\textrm{dB
    ') If a power splitter with higher level imbalance is used correction
    of the measured frequency response is recommended.
```

```
Determining the level accuracy at 128 MHz
Test setup: > connect power sensor (item 9) to the power meter and execute
    function 'ZERO' when there is no signal applied to the power
    sensor
    connect power sensor to RF output of signal generator
Signal generator settings: - frequency }128\textrm{MHz
    - level -30 dBm
Measurement: > determine output power of the signal generator with the power meter
> connect RF output of the signal generator to RF input of the FSU
FSU settings:
```

```
- [ PRESET]
```

- [PRESET]
- [AMPT : RF ATTEN MANUAL : 10 dB]
- [AMPT : RF ATTEN MANUAL : 10 dB]
- [AMPT : -20 dBm]
- [AMPT : -20 dBm]
- [SETUP : PREAMP ON]
- [SETUP : PREAMP ON]
- [SPAN : 10 kHz]
- [SPAN : 10 kHz]
- [BW : RES BW MANUAL : 10 kHz]
- [BW : RES BW MANUAL : 10 kHz]
- [TRACE : DETECTOR : RMS]
- [TRACE : DETECTOR : RMS]
- [FREQ : CENTER : 128 MHz]
- [FREQ : CENTER : 128 MHz]
set marker to peak of signal
- [MKR \Rightarrow : PEAK]
Evaluation: The difference between the signal levels measured with the power meter and the FSU (level reading of marker 1) reflects the absolute level accuracy of the FSU. It can be calculated as:
Level accuracy ${ }_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSU }}-\mathrm{L}_{\text {powermeter }}$

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Checking the frequency response} \\
\hline Test setup: & \begin{tabular}{l}
> connect RF output of the signal generator to input of the divider \\
\(>\) connect output 1 of the divider to the power sensor / power meter \\
> connect output 2 of the divider to RF input of the FSU
\end{tabular} \\
\hline Signal generator settings: & \begin{tabular}{ll} 
- level & 0 dBm \\
- frequency & 128 MHz
\end{tabular} \\
\hline FSU settings & \begin{tabular}{l}
[ PRESET] \\
[ AMPT : RF ATTEN MANUAL : \(\mathbf{3 0} \mathbf{d B}\) ] \\
[ AMPT : \(\mathbf{0 d B m}\) ] \\
[ SETUP : PREAMP ON] \\
[ SPAN : \(\mathbf{1 0 0} \mathbf{~ k H z}\) ] \\
[ BW : RES BW MANUAL : \(\mathbf{1 0} \mathbf{~ k H z}\) ] \\
[ TRACE : DETECTOR : RMS ] \\
[ FREQ : CENTER : \(\mathbf{1 2 8} \mathbf{~ M H z}\) ]
\end{tabular} \\
\hline \multirow[t]{2}{*}{Reference measurement:} & \begin{tabular}{l}
> Determine signal level \(\mathrm{L}_{\text {powermeter }}\) \\
> set marker to peak of signal \\
- [ MKR \(\Rightarrow\) : PEAK ]
\end{tabular} \\
\hline & The signal level \(\mathrm{L}_{\text {FSU }}\) is displayed by the level reading of marker 1 .
\[
\operatorname{Ref}_{128 M H z}=L_{\text {FSU }}-L_{\text {powermeter }}
\] \\
\hline \multicolumn{2}{|l|}{Measurement} \\
\hline Signal generator settings: & \begin{tabular}{l}
- frequency \(\quad f_{\text {fresp }}\) \\
see table of performance test report for values of \(f_{\text {fresp }}\)
\end{tabular} \\
\hline Power meter settings: & Determine signal level L \(\qquad\) To achive higher accuracy it is recommended to compensate the frequency response of the power sensor. \\
\hline \multirow[t]{2}{*}{FSU settings:} & \begin{tabular}{l}
- [ FREQ : CENTER : \{ffresp\} ] \\
see table of performance test report for values of \(f_{\text {fresp }}\). \\
set marker to peak of signal
\[
-[\text { MKR } \Rightarrow \text { : PEAK ] }
\]
\end{tabular} \\
\hline & The signal level \(\mathrm{L}_{\text {FSU }}\) is displayed by the level reading of marker 1. \\
\hline Evaluation: & \begin{tabular}{l}
The frequency response can be calculated as: \\
Frequency response \(=L_{\text {FSU }}-L_{\text {powermeter }}-\operatorname{Ref}_{128} \mathrm{MHz}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Checking the Frequency Response with Electronic Attenuator}

Test equipment:
```

- Signal generator:
FSU 3, FSU 26: Section "Measurement Equipment", item 3
FSU 8: Section "Measurement Equipment", item 3 and 4
frequency range:
FSU 3, FSU 26: }10\textrm{MHz}\mathrm{ to 3.6 GHz
FSU 8: }\quad10\textrm{MHz}\mathrm{ to }8\textrm{GHz
maximum level }\geq0\textrm{dBm
- power meter (Section "Measurement Equipment", item 8)
- power sensor:
FSU 3, FSU 26:Section "Measurement Equipment", item }
FSU 8: Section "Measurement Equipment", item 9 and 10
frequency range:
FSU 3, FSU 26: 10 MHz to 3.6 GHz
FSU 8: }\quad10\textrm{MHz}\mathrm{ to }8\textrm{GHz
maximum power }\mp@subsup{P}{\operatorname{max}}{}\geq100\mu\textrm{W
impedance Z = 50 \Omega
-6-dB divider (Section "Measurement Equipment", item 6)
frequency range:
FSU 3, FSU 26: 10 MHz to 3.6 GHz
FSU 8: }\quad10\textrm{MHz}\mathrm{ to }8\textrm{GHz
level imbalance }\mp@subsup{}{}{1}\mathrm{) }1\textrm{MHz}\mathrm{ to 1 GHz }\leq0.1\textrm{dB
1GHz to 8 GHz }\leq0.2\textrm{dB
${ }^{1}$) If a power splitter with higher level imbalance is used correction of the measured frequency response is recommended.

```
\begin{tabular}{|c|c|}
\hline Test setup: & \begin{tabular}{l}
connect RF output of the signal generator to input of the divider \\
connect output 1 of the divider to the power sensor / power meter \\
connect output 2 of the divider to RF input of the FSU
\end{tabular} \\
\hline Signal generator settings: & \begin{tabular}{ll} 
- level & 0 dBm \\
- frequency & 128 MHz
\end{tabular} \\
\hline FSU settings: & \begin{tabular}{l}
- [ PRESET ] \\
- [ AMPT : RF ATTEN MANUAL : 10 dB ] \\
- [ AMPT : NEXT : ELEC ATTEN MANUAL : \(\left\{\mathrm{E}_{\mathrm{ATT}}\right\}\) : \(\mathbf{d B}\) ] \\
- [ AMPT : 0 dBm ] \\
- [ SPAN : 100 kHz ] \\
- [ BW : RES BW MANUAL : \(\mathbf{1 0} \mathbf{~ k H z}\) ] \\
- [ TRACE : DETECTOR : RMS ] \\
- [ FREQ : CENTER : \(\mathbf{1 2 8} \mathbf{~ M H z}\) ] \\
see table of performance test report for values of \(E_{A T T}\).
\end{tabular} \\
\hline Reference measurement: & \begin{tabular}{l}
Determine signal level \(L_{\text {powermeter }}\). \\
set marker to peak of signal
\[
-[\mathbf{M K R} \Rightarrow: \text { PEAK ] }
\] \\
The signal level \(L_{\text {FSU }}\) is displayed by the level reading of marker 1.
\[
\operatorname{Ref}_{128 \mathrm{MHz}}=\mathrm{L}_{\text {FSU }}-\mathrm{L}_{\text {powermeter }}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Measurement \\
Signal generator settings:
\end{tabular} & - frequency \(\quad f_{\text {fresp }}\) see table of performance test report for values of \(f_{\text {fresp }}\) \\
\hline Power meter settings: & Determine signal level \(\mathrm{L}_{\text {powermeter }}\). To achive higher accuracy it is recommended to compensate the frequency response of the power sensor. \\
\hline FSU settings: & \begin{tabular}{l}
- [ FREQ : CENTER : \{ffresp \(\}\) ] \\
see table of performance test report for values of \(f_{\text {fresp }}\). \\
set marker to peak of signal
\[
-[\mathbf{M K R} \Rightarrow: \text { PEAK }]
\]
\end{tabular} \\
\hline & \\
\hline Evaluation: & \begin{tabular}{l}
The frequency response can be calculated as: \\
Frequency response \(=L_{\text {FSU }}-\mathrm{L}_{\text {powermeter }}-\operatorname{Ref}_{128 \mathrm{MHz}}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Checking Non-linearities with Electronic Attenuator}

\section*{Third-Order Intercept}

Test equipment
- 2 signal generators

FSU 3, FSU 26: Section "Measurement Equipment", item 2 and 3 FSU 8: \(\quad\) Section "Measurement Equipment", item 2 and 4
frequency range:
FSU 3, FSU 26: 10 MHz to 3.6 GHz
FSU 8: \(\quad 10 \mathrm{MHz}\) to 8 GHz
maximum level \(\geq 0 \mathrm{dBm}\)
- 2 attenuators (Section "Measurement Equipment", item 12)
attenuation \(\quad a_{\text {ATT }}=10 \mathrm{~dB}\)
frequency range
FSU 3, FSU 26: 10 MHz to 3.6 GHz
FSU 8: \(\quad 10 \mathrm{MHz}\) to 8 GHz
- coupler (Section "Measurement Equipment", item 5)
frequency range
FSU 3, FSU 26: 10 MHz to 3.6 GHz
FSU 8: \(\quad 10 \mathrm{MHz}\) to 8 GHz
decoupling \(>12 \mathrm{~dB}\)
Test setup: \begin{tabular}{rl} 
& \(>\)\begin{tabular}{l} 
connect RF outputs of the signal generators via \(10-\mathrm{dB}\) attenuators \\
\\
to the inputs of the coupler
\end{tabular} \\
& \(>\) connect output of the coupler to the RF input of the FSU.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Signal generator settings: (both generators) & \(\begin{array}{lll}\text { - frequency: } & \text { generator } 1 & f_{g 1}=f_{\text {in }}-100 \mathrm{kHz} \\ & \text { generator } 2 & f_{g 2}=f_{\text {in }}+100 \mathrm{kHz}\end{array}\) \\
\hline & \begin{tabular}{l}
See table of performance test report for values of \(f_{\text {in }}\) \\
adjust the output level of signal generators for an input level at the FSU of -10 dBm .
\end{tabular} \\
\hline \multirow[t]{8}{*}{FSU settings:} & - [ PRESET ] \\
\hline & - [ AMPT : RF ATTEN MANUAL : 0 dB ] \\
\hline & - [ AMPT : NEXT : ELEC ATTEN MANUAL : 0 dB] \\
\hline & - [ AMPT : 0 dBm ] \\
\hline & - [ SPAN : 500 kHz ] \\
\hline & - [ BW : RES BW MANUAL : 3 kHz ] \\
\hline & - [ FREQ : CENTER : \(\left\{\mathrm{f}_{\mathrm{in}}\right\}\) ] \\
\hline & See table of performance test report for values of \(\mathrm{f}_{\mathrm{in}}\). \\
\hline Measurement & > [ MKR FCTN : TOI ] \\
\hline Evaluation: & The third order intercept point (T.O.I) referred to the input signal is is displayed in the marker field by the reading [TOI]. \\
\hline
\end{tabular}

\section*{Checking the RF Attenuator (with Option B25)}
\begin{tabular}{|c|c|}
\hline Test equipment: & - Signal generator (Section "Measurement Equipment", item 3)
frequency \(\quad 128 \mathrm{MHz}\)
maximum level \(\geq 10 \mathrm{dBm}\)
- step attenuator (Section "Measurement Equipment", item 11)
frequency
\begin{tabular}{ll} 
attenuation & 128 MHz \\
attenuation accuracy & 0 to 80 dB in 5 dB steps \\
\end{tabular} \\
\hline Test setup: & \begin{tabular}{l}
connect RF output of the signal generator to RF input of the step attenuator \\
connect RF output of the step attenuator to RF input of the FSU
\end{tabular} \\
\hline Signal generator settings: & \begin{tabular}{ll} 
- Frequency & 128 MHz \\
- Level & 10 dBm
\end{tabular} \\
\hline Step attenuator settings: & Attenuation 70 dB \\
\hline FSU settings: & \begin{tabular}{l}
- [ PRESET ] \\
- [ FREQ : CENTER : \(\mathbf{1 2 8} \mathbf{~ M H z}\) ] \\
- [ SPAN : 500 Hz ] \\
- [ BW : RES BW MANUAL : 1 kHz ] \\
- [ TRACE : DETECTOR : RMS ] \\
- [ BW : VIDEO BW MANUAL : \(\mathbf{1 0 0} \mathbf{~ H z}\) ] \\
- [ AMPT : RF ATTEN MANUAL : \(\mathbf{1 0} \mathbf{d B}\) ] \\
- [ AMPT : -35 dBm ]
\end{tabular} \\
\hline Reference measurement: & \begin{tabular}{l}
set marker to peak of signal \\
- [ MKR \(\Rightarrow\) : PEAK ] \\
> set reference to peak of signal \\
- [ MKR : REFERENCE FIXED ]
\end{tabular} \\
\hline \begin{tabular}{l}
Measurement: \\
Step attenuator settings:
\end{tabular} & Attenuation \(\left\{80 \mathrm{~dB}-\mathrm{a}_{\mathrm{FSU}}\right\}\) see table below for values of \(\mathrm{a}_{\mathrm{ATT}}\). \\
\hline FSU settings: & \begin{tabular}{l}
- [ AMPT : RF ATTEN MANUAL : \(\left\{\mathrm{a}_{\mathrm{FS}}\right\}\) ] ] \\
- [ AMPT : \(\left\{-45 \mathrm{dBm}+\mathrm{a}_{\mathrm{FSU}}\right\}\) dBm ] \\
- [ MKR \(\Rightarrow\) : PEAK ] \\
see table below for values of \(\mathrm{a}_{\text {FSU }}, \mathrm{a}_{\text {ATT }}\) and reference level.
\end{tabular} \\
\hline Evaluation: & The difference between the level of the input signal of the FSU and the reference (at 10 dB RF-Attenuation) is displayed in the marker field by the reading 'Delta [T1 FXD]'. \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{a}_{\text {ATt }}\) in dB & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 \\
\hline \(\mathbf{a}_{\text {FSu }}\) in dB & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 65 & 70 & 75 \\
\hline \begin{tabular}{l} 
Ref.level in \\
dBm
\end{tabular} & -45 & -40 & -35 & -30 & -25 & -20 & -15 & -10 & -5 & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\
\hline
\end{tabular}

\section*{Checking the electronic Attenuator accuracy}
\begin{tabular}{|c|c|}
\hline Test equipment: & - Signal generator (Section "Measurement Equipment", item 3)
frequency 128 MHz
maximum level \(\geq 0 \mathrm{dBm}\)
- step attenuator (Section "Measurement Equipment", item 11)
\begin{tabular}{ll} 
frequency & 128 MHz \\
attenuation & 0 to 40 dB in 5 dB steps \\
attenuation accuracy & \(<0.1 \mathrm{~dB}\)
\end{tabular} \\
\hline Test setup: & \begin{tabular}{l}
connect RF output of the signal generator to RF input of the step attenuator \\
> connect RF output of the step attenuator to RF input of the FSU
\end{tabular} \\
\hline Signal generator settings: & \begin{tabular}{ll} 
- Frequency & 128 MHz \\
- Level & 0 dBm
\end{tabular} \\
\hline Step attenuator settings: & attenuation 40 dB \\
\hline FSU settings: & \begin{tabular}{l}
- [ PRESET] \\
- [ FREQ : CENTER : \(\mathbf{1 2 8} \mathbf{~ M H z}\) ] \\
- [ SPAN : 500 Hz ] \\
- [ BW : RES BW MANUAL : \(\mathbf{1} \mathbf{~ k H z}\) ] \\
- [TRACE : DETECTOR : RMS ] \\
- [ BW : VIDEO BW MANUAL: \(\mathbf{1 0 0 ~ H z}\) ] \\
- [ AMPT : RF ATTEN MANUAL : \(\mathbf{1 0} \mathbf{d B}\) ] \\
- [ AMPT : - \(\mathbf{3 0} \mathrm{dBm}\) ]
\end{tabular} \\
\hline Reference measurement: & \begin{tabular}{l}
> set marker to peak of signal \\
- [ MKR \(\Rightarrow\) : PEAK ] \\
> set reference to peak of signal \\
- [ MKR : REFERENCE FIXED ]
\end{tabular} \\
\hline Measurement: & \\
\hline Step attenuator settings: & \begin{tabular}{l}
Attenuation \(\quad\left\{40 \mathrm{~dB}-\mathrm{a}_{\text {FSU }}\right\}\) \\
See table below for values of a \(_{\text {Att }}\).
\end{tabular} \\
\hline FSU settings: & \[
\begin{aligned}
& -\left[\text { AMPT : NEXT : ELEC ATTEN MANUAL : }\left\{\mathrm{a}_{\text {FSU }}\right\}\right] \\
& -\left[\text { AMPT }:\left\{-30 \mathrm{dBm}+\mathrm{a}_{\mathrm{FSU}}\right\} \mathrm{dBm}\right] \\
& -[\text { MKR } \Rightarrow: \text { PEAK }]
\end{aligned}
\]
\[
\text { see table below for values of } a_{\text {FSU }}, a_{\text {ATT }} \text { and reference level. }
\] \\
\hline Evaluation: & The difference between the level of the input signal of the FSU and the reference (at 10 dB RF-Attenuation) is displayed in the marker field by the reading 'Delta [T1 FXD]'. \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \(\mathbf{a}_{\text {ATT }}\) & 40 dB & 35 dB & 20 dB & 25 dB & 20 dB & 15 dB & 10 dB \\
\hline \(\mathbf{a}_{\text {FSU }}\) & 0 dB & 5 dB & 10 dB & 15 dB & 20 dB & 25 dB & 30 dB \\
\hline Reference level & -30 dBm & -25 dBm & -20 dBm & -15 dBm & -10 dBm & -5 dBm & 0 dBm \\
\hline
\end{tabular}

\section*{Performance Test Report FSU}

Table 1-1
Performance Test report
ROHDE \& SCHWARZ Performance Test Report Spectrum Analyzer FSU Version 12-Feb-02

Model (FSU 3/ FSU 8/ FSU 26):
Order number: \(\quad 1129.9003 .03 / 1129.9003 .08 / 1129.9003 .26\)
Serial number
Test person:
Date:

Sign:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency accuracy \\
Reference oscillator \\
Model w/o Opt. B4 \\
Model with Opt. B4
\end{tabular} & Page 1.3 & \begin{tabular}{l}
9.999999 \\
9.9999997
\end{tabular} &  & \[
\begin{aligned}
& 10.000001 \\
& 10.0000003
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MHz} \\
& \mathrm{MHz}
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
Image frequency rejection, 1 st IF, \(\mathrm{f}_{\text {in }}\) \\
11 MHz \\
100 MHz \\
1701 MHz \\
3001 MHz
\end{tabular} & Page 1.4 & \[
\begin{aligned}
& 90 \\
& 90 \\
& 90 \\
& 90
\end{aligned}
\] &  &  & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Image frequency rejection 2nd IF, \(\mathrm{f}_{\text {in }}\) \\
100 MHz \\
FSU 8, FSU 26: \\
3700 MHz \\
5000 MHz \\
7999 MHz \\
FSU 26: \\
26000 MHz
\end{tabular} & Page 1.4 & \begin{tabular}{l}
90 \\
70 \\
70 \\
70 \\
70
\end{tabular} &  & -
-
-
-
-
-
- & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
\(d B\)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Image frequency rejection 3 rd \(I F, f_{\text {in }}\)
\[
100 \mathrm{MHz}
\] \\
FSU 8, FSU 26:
\[
4500 \mathrm{MHz}
\]
\end{tabular} & Page 1.4 & 90
\[
70
\] &  &  & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
1st IF rejection \(\mathrm{f}_{\mathrm{in}}\) \\
11 MHz \\
100 MHz \\
1701 MHz \\
2990 MHz
\end{tabular} & Page 1.5 & \[
\begin{aligned}
& 90 \\
& 90 \\
& 90 \\
& 90
\end{aligned}
\] &  &  & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB} \\
& \mathrm{~dB} \\
& \mathrm{~dB}
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
\(2^{\text {nd }}\) IF rejection \(f_{\text {in }}\) \\
FSU 3, FSU 8: \\
100 MHz \\
FSU 3, FSU 8: \\
4500 MHz
\end{tabular} & Page 1.5 & 90
\[
70
\] &  & -
-
- & DB
\[
\mathrm{dB}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
3rd-order intercept point, \(\mathrm{f}_{\mathrm{in}}\) FSU 3, FSU 8:
\[
\begin{aligned}
& 28 \mathrm{MHz} \\
& 106 \mathrm{MHz} \\
& 261 \mathrm{MHz} \\
& 640 \mathrm{MHz} \\
& 1000 \mathrm{MHz} \\
& 1700 \mathrm{MHz} \\
& 2500 \mathrm{MHz} \\
& 3590 \mathrm{MHz}
\end{aligned}
\] \\
FSU 8: \\
4001 MHz \\
5001 MHz \\
7999 MHz \\
FSU 26: \\
28 MHz \\
106 MHz \\
261 MHz \\
640 MHz \\
1000 MHz \\
1700 MHz \\
2500 MHz \\
3590 MHz \\
4001 MHz \\
5001 MHz \\
7999 MHz \\
12000 MHz \\
20000 MHz \\
26000 MHz
\end{tabular} & Page 1.6 & \begin{tabular}{l}
17 \\
17 \\
17 \\
20 \\
20 \\
20 \\
20 \\
20 \\
18 \\
18 \\
18 \\
17 \\
17 \\
17 \\
22 \\
22 \\
22 \\
22 \\
22 \\
12 \\
12 \\
12 \\
12 \\
12 \\
12
\end{tabular} & —
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\square\)
\(\qquad\)
\(\qquad\) &  & dBm & \\
\hline \begin{tabular}{l}
\(2^{\text {nd }}\)-order harmonic distortion, \(f_{\text {in }}\) : \\
28 MHz \\
106 MHz \\
261 MHz \\
640 MHz \\
1000 MHz \\
1700 MHz
\end{tabular} & Page 1.7 & \[
\begin{aligned}
& 35 \\
& 35 \\
& 45 \\
& 45 \\
& 45 \\
& 35
\end{aligned}
\] &  &  & \begin{tabular}{l}
dBm \\
dBm \\
dBm \\
dBm \\
dBm \\
dBm
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
IF bandwidth switch. level accuracy \\
100 Hz \\
1 kHz \\
10 kHz \\
100 kHz \\
300 kHz \\
1 MHz \\
3 MHz \\
10 MHz \\
20 MHz
\end{tabular} & Page 1.8 & \[
\begin{aligned}
& -0.1 \\
& -0.1 \\
& - \\
& -0.1 \\
& -0.2 \\
& -0.2 \\
& -0.2 \\
& -0.2 \\
& -0.5
\end{aligned}
\] & \begin{tabular}{l}
\(\qquad\) \\
reference
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& +0.1 \\
& +0.1 \\
& - \\
& +0.1 \\
& +0.2 \\
& +0.2 \\
& +0.2 \\
& +0.2 \\
& +0.5
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline FFT Bandwidth level accuracy
\[
\begin{aligned}
& 100 \mathrm{~Hz} \\
& 300 \mathrm{~Hz} \\
& 1 \mathrm{kHz} \\
& 3 \mathrm{kHz}
\end{aligned}
\] & Page 1.8 & \[
\begin{aligned}
& -0.2 \\
& -0.2 \\
& -0.2 \\
& -0.2
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.2 \\
& +0.2 \\
& +0.2 \\
& +0.2
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB \\
dB \\
\(d B\)
\end{tabular} & \\
\hline \begin{tabular}{l}
IF bandwidth \\
Bandwidth: \\
100 Hz \\
1 kHz \\
10 kHz \\
100 kHz \\
300 kHz \\
1 MHz \\
3 MHz \\
10 MHz \\
20 MHz \\
50 MHz
\end{tabular} & Page 1.9 & \[
\begin{aligned}
& 97 \\
& 970 \\
& 9.7 \\
& 97 \\
& 270 \\
& 900 \\
& 2.7 \\
& 7 \\
& 14 \\
& 35
\end{aligned}
\] &  & \[
\begin{aligned}
& 103 \\
& 1030 \\
& 10.3 \\
& 103 \\
& 330 \\
& 1100 \\
& 3.3 \\
& 11 \\
& 22 \\
& 55
\end{aligned}
\] & \begin{tabular}{l}
Hz \\
Hz \\
kHz \\
kHz \\
kHz \\
kHz \\
MHz \\
MHz \\
MHz \\
MHz
\end{tabular} & \\
\hline \begin{tabular}{l}
IF Bandwidths Shape factor: \\
100 Hz \\
1 kHz \\
10 kHz \\
100 kHz \\
300 kHz \\
1 MHz \\
3 MHz \\
10 MHz
\end{tabular} & Page 1.9 &  &  & \[
\begin{aligned}
& 6 \\
& 6 \\
& 6 \\
& 6 \\
& 12 \\
& 12 \\
& 7 \\
& 7
\end{aligned}
\] &  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Noise Display \(\mathrm{f}_{\text {noise }}\) : \\
20 Hz \\
90 Hz \\
900 Hz
\end{tabular} & Page 1.10 & -
-
- &  & \[
\begin{aligned}
& -80 \\
& -100 \\
& -110
\end{aligned}
\] & \begin{tabular}{l}
dBm \\
dBm \\
dBm
\end{tabular} & \\
\hline \begin{tabular}{l}
Noise Display normalized to 10 Hz : \\
FSU 3 / 8: \\
9 kHz \\
95 kHz \\
999 kHz \\
9.99 MHz \\
19.99 MHz \\
49.99 MHz \\
99.99 MHz \\
199.9 MHz \\
499.9 MHz \\
999.9 MHz \\
1499 MHz \\
1999 MHz \\
2499 MHz \\
2999 MHz \\
3599 MHz
\end{tabular} & Page 1.10 &  &  & \[
\begin{aligned}
& -120 \\
& -120 \\
& -130 \\
& -145 \\
& -145 \\
& -145 \\
& -145 \\
& -145 \\
& -145 \\
& -145 \\
& -145 \\
& -145 \\
& -143 \\
& -143 \\
& -142
\end{aligned}
\] & \begin{tabular}{l}
dBm \\
dBm
\end{tabular} & \\
\hline \begin{tabular}{l}
Noise Display normalized to 10Hz: \\
FSU 8: \\
3999 MHz \\
4499 MHz \\
4999 MHz \\
5499 MHz \\
5999 MHz \\
6499 MHz \\
6999 MHz \\
7499 MHz \\
7999 MHz
\end{tabular} & Page 1.10 &  &  & \[
\begin{aligned}
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142
\end{aligned}
\] & \begin{tabular}{l}
dBm \\
dBm
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Noise Display normalized to 10 Hz : \\
FSU 26: \\
9 kHz \\
95 kHz \\
999 kHz \\
9.99 MHz \\
19.99 MHz \\
49.99 MHz \\
99.99 MHz \\
199.9 MHz \\
499.9 MHz \\
999.9 MHz \\
1499 MHz \\
1999 MHz \\
2499 MHz \\
2999 MHz \\
3599 MHz \\
3601 MHz \\
6999 MHz \\
9999 MHz \\
12999 MHz \\
17999 MHz \\
21999 MHz \\
26499 MHz
\end{tabular} & Page 1.10 &  &  & \[
\begin{aligned}
& -120 \\
& -120 \\
& -130 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -142 \\
& -140 \\
& -140 \\
& -140 \\
& -142 \\
& -142 \\
& -140 \\
& -140 \\
& -138 \\
& -137 \\
& -135
\end{aligned}
\] & \begin{tabular}{l}
dBm \\
dBm
\end{tabular} & \\
\hline \begin{tabular}{l}
Level accuracy \\
at \(128 \mathrm{MHz} .-30 \mathrm{dBm}\)
\end{tabular} & Page 1.11 & -0.2 & - & +0.2 & dB & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response \\
RF Attenuation 10 dB DC coupling \\
\(\mathrm{f}_{\text {fresp }}\) \\
1 MHz \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
300 MHz \\
400 MHz \\
500 MHz \\
600 MHz \\
700 MHz \\
800 MHz \\
900 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
3000 MHz \\
3599 MHz
\end{tabular} & Page 1.11 & \[
\begin{aligned}
& -0.5 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.5 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response \\
RF Attenuation 10 dB DC coupling \\
FSU 8, FSU 26: \(\mathrm{f}_{\text {fresp }}\) \\
3610 MHz \\
4000 MHz \\
4500 MHz \\
5000 MHz \\
5500 MHz \\
6000 MHz \\
6500 MHz \\
7000 MHz \\
7990 MHz \\
FSU 26: \\
9000 MHz \\
10000 MHz \\
11000 MHz \\
12000 MHz \\
13000 MHz \\
14000 MHz \\
15000 MHz \\
16000 MHz \\
17000 MHz \\
18000 MHz \\
19000 MHz \\
20000 MHz \\
21000 MHz \\
22000 MHz \\
23000 MHz \\
24000 MHz \\
25000 MHz \\
26000 MHz
\end{tabular} & Page 1.11 & \[
\begin{aligned}
& -1.5 \\
& -1.5 \\
& -1.5 \\
& -1.5 \\
& -1.5 \\
& -1.5 \\
& -1.5 \\
& -1.5 \\
& -2 \\
& \hline-2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2.5 \\
& -2.5 \\
& \hline-2.5
\end{aligned}
\] &  & \[
\begin{aligned}
& +1.5 \\
& +1.5 \\
& +1.5 \\
& +1.5 \\
& +1.5 \\
& +1.5 \\
& +1.5 \\
& +1.5 \\
& +2 \\
& \hline+2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2.5 \\
& +2.5 \\
& +2.5 \\
& +2.5
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response \\
RF Attenuation 10 dB \\
AC coupling \\
\(f_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
500 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
3000 MHz \\
3599 MHz
\end{tabular} & Page 1.11 & \[
\begin{aligned}
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency response \\
RF Attenuation 5 dB DC coupling \\
\(f_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
500 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
3000 MHz \\
3599 MHz
\end{tabular} & Page 1.11 & \[
\begin{aligned}
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response \\
RF Attenuation 20 dB DC coupling \\
\(f_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
500 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
3000 MHz \\
3599 MHz
\end{tabular} & Page 1.11 & \[
\begin{aligned}
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency response \\
RF Attenuation 40 dB \\
DC coupling \\
\(f_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
500 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
3000 MHz \\
3599 MHz
\end{tabular} & Page 1.11 & \[
\begin{aligned}
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3 \\
& -0.3
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3 \\
& +0.3
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Display linearity RBW 500 Hz \\
\(\mathrm{a}_{\text {Att }}\) : \\
10 dB \\
15 dB \\
20 dB \\
25 dB \\
30 dB \\
35 dB \\
40 dB \\
45 dB \\
50 dB \\
55 dB \\
60 dB \\
65 dB \\
70 dB \\
75 dB \\
80 dB \\
85 dB \\
90 dB \\
95 dB \\
100 dB
\end{tabular} & Page 1.14 & \[
\begin{aligned}
& 9.9 \\
& 4.9 \\
& - \\
& -5.1 \\
& -10.1 \\
& -15.1 \\
& -20.1 \\
& -25.1 \\
& -30.1 \\
& -35.1 \\
& -40.1 \\
& -45.1 \\
& -50.1 \\
& -55.1 \\
& -60.1 \\
& -65.3 \\
& -70.3 \\
& -75.3 \\
& -80.3
\end{aligned}
\] & Referenz
\(\qquad\)
\(\qquad\) & \[
\begin{aligned}
& 10.1 \\
& 5.1 \\
& - \\
& -4.9 \\
& -9.9 \\
& -14.9 \\
& -19.9 \\
& -24.9 \\
& -29.9 \\
& -34.9 \\
& -39.9 \\
& -44.9 \\
& -49.9 \\
& -54.9 \\
& -59.9 \\
& -64.7 \\
& -69.7 \\
& -74.7 \\
& -79.7
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Display linearity RBW 300 kHz \\
\(\mathrm{a}_{\text {ATt }}\) : \\
10 dB \\
15 dB \\
20 dB \\
25 dB \\
30 dB \\
35 dB \\
40 dB \\
45 dB \\
50 dB \\
55 dB \\
60 dB \\
65 dB \\
70 dB \\
75 dB \\
80 dB
\end{tabular} & Page 1.14 & \begin{tabular}{l}
9.8 \\
4.8 \\
-5.2 \\
- 10.2 \\
-15.2 \\
-20.2 \\
-25.2 \\
-30.2 \\
-35.2 \\
-40.2 \\
-45.5 \\
\(-50.5\) \\
-55.5 \\
\(-60.5\)
\end{tabular} & \begin{tabular}{l}
\(\qquad\) \\
Referenz
\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& 10.2 \\
& 5.2 \\
& - \\
& -4.8 \\
& -9.8 \\
& -14.8 \\
& -19.8 \\
& -24.8 \\
& -29.8 \\
& -34.8 \\
& -39.8 \\
& -44.5 \\
& -49.5 \\
& -54.5 \\
& -59.5
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Display linearity \\
RBW 20 MHz \\
\(\mathrm{a}_{\mathrm{ATT}}\) : \\
10 dB \\
15 dB \\
20 dB \\
25 dB \\
30 dB \\
35 dB \\
40 dB \\
45 dB \\
50 dB \\
55 dB \\
60 dB \\
65 dB \\
70 dB
\end{tabular} & Page 1.14 & \[
\begin{aligned}
& 9.5 \\
& 4.5 \\
& - \\
& -5.5 \\
& -10.5 \\
& -15.5 \\
& -20.5 \\
& -25.5 \\
& -30.5 \\
& -35.5 \\
& -40.5 \\
& -45.5 \\
& -50.5
\end{aligned}
\] & Referenz & \[
\begin{aligned}
& 10.5 \\
& 5.5 \\
& - \\
& -4.5 \\
& -9.5 \\
& -14.5 \\
& -19.5 \\
& -24.5 \\
& -29.5 \\
& -34.5 \\
& -39.5 \\
& -44.5 \\
& -49.5
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Attenuator accuracy \\
\(\mathrm{a}_{\mathrm{ATT}}\) : \\
0 dB \\
5 dB \\
10 dB \\
20 dB \\
40 dB
\end{tabular} & Page 1.15 & \[
\begin{aligned}
& -9.8 \\
& -4.8 \\
& - \\
& +9.8 \\
& +29.8
\end{aligned}
\] & reference & \[
\begin{aligned}
& -10.2 \\
& -5.2 \\
& - \\
& +10.2 \\
& +30.2
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Reference level switching accuracy \\
Reference level \\
0 dBm \\
\(-10 \mathrm{dBm}\) \\
\(-20 \mathrm{dBm}\) \\
\(-30 \mathrm{dBm}\) \\
\(-40 \mathrm{dBm}\) \\
\(-50 \mathrm{dBm}\) \\
\(-11 \mathrm{dBm}\) \\
\(-12 \mathrm{dBm}\) \\
\(-13 \mathrm{dBm}\) \\
\(-14 \mathrm{dBm}\) \\
\(-15 \mathrm{dBm}\) \\
\(-16 \mathrm{dBm}\) \\
\(-17 \mathrm{dBm}\) \\
\(-18 \mathrm{dBm}\) \\
\(-19 \mathrm{dBm}\)
\end{tabular} & Page 1.16 & \[
\begin{aligned}
& +9,85 \\
& - \\
& -10.15 \\
& -20.15 \\
& -30.15 \\
& -40.15 \\
& \\
& -1.15 \\
& -2.15 \\
& -3.15 \\
& -4.15 \\
& -5.15 \\
& -6.15 \\
& -7.15 \\
& -8.15 \\
& -9.15
\end{aligned}
\] & reference
\(\qquad\)
\(\qquad\) & \[
\begin{aligned}
& +10,15 \\
& - \\
& -9,85 \\
& -19,85 \\
& -29,85 \\
& -39,85 \\
& \\
& -0,85 \\
& -1,85 \\
& -2,85 \\
& -3,85 \\
& -4,85 \\
& -5,85 \\
& -6,85 \\
& -7,85 \\
& -8,85
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Phase noise \\
Offset frequency: \\
100 Hz \\
1 kHz \\
10 kHz \\
100 kHz \\
1 MHz
\end{tabular} & Page 1.18 &  &  & \[
\begin{aligned}
& -90 \\
& -112 \\
& -120 \\
& -120 \\
& -138
\end{aligned}
\] & \begin{tabular}{l}
\(\mathrm{dBc}(1 \mathrm{~Hz})\) \\
dBc (1Hz) \\
\(\mathrm{dBc}(1 \mathrm{~Hz})\) \\
\(d B c(1 H z)\) \\
dBc (1Hz)
\end{tabular} & \\
\hline \begin{tabular}{l}
Return Loss \\
RF input \\
RF Att \(10 \mathrm{~dB} / \mathrm{DC}\) \(f_{i n}\) \\
FSU 3, FSU 8: \\
10 MHz \\
250 MHz \\
500 MHz \\
750 MHz \\
1000 MHz \\
1250 MHz \\
1500 MHz \\
1750 MHz \\
2000 MHz \\
2250 MHz \\
2500 MHz \\
2750 MHz \\
3000 MHz \\
3250 MHz \\
3500 MHz \\
FSU 8: \\
3750 MHz \\
4000 MHz \\
4250 MHz \\
4500 MHz \\
4750 MHz \\
5000 MHz \\
5500 MHz \\
6000 MHz \\
6500 MHz \\
7000 MHz
\end{tabular} & \begin{tabular}{l}
Page Fehler! \\
Textmarke \\
nicht \\
definiert.
\end{tabular} & \begin{tabular}{l}
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
14 \\
9,5 \\
9,5 \\
9,5 \\
9,5 \\
9,5 \\
9,5 \\
9,5 \\
9,5 \\
9,5 \\
9,5
\end{tabular} &  &  & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
FSU 26: \\
10 MHz \\
250 MHz \\
500 MHz \\
750 MHz \\
1000 MHz \\
1250 MHz \\
1500 MHz \\
1750 MHz \\
2000 MHz \\
2250 MHz \\
2500 MHz \\
2750 MHz \\
3000 MHz \\
3250 MHz \\
3500 MHz \\
4000 MHz \\
6000 MHz \\
8000 MHz \\
10000 MHz \\
12000 MHz \\
14000 MHz \\
16000 MHz \\
18000 MHz \\
20000 MHz \\
22000 MHz \\
24000 MHz \\
26000 MHz
\end{tabular} & & \[
\begin{aligned}
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 20 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& 14 \\
& 9,5 \\
& 9,5 \\
& 9,5 \\
& 9,5
\end{aligned}
\]
\[
9,5
\] &  &  & \begin{tabular}{l}
dB \\
dB \\
\(d B\) \\
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}

\section*{Performance Test Report Option FSU-B25}

Table 1-3 Performance Test Report Option FSU-B25
ROHDE \& SCHWARZ Performance Test Report Option FSU-B25 Version 12-Feb-2002

Serial number:
Test person:
Date:
Sign:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Noise Display with \\
Preamplifier (B25) \\
FSU 3 / 8 / 26: \(\mathrm{f}_{\text {noise: }}\) \\
10.99 MHz \\
19.99 MHz \\
49.99 MHz \\
99.99 MHz \\
199.9 MHz \\
499.9 MHz \\
999.9 MHz \\
1499 MHz \\
1999 MHz \\
2499 MHz \\
2999 MHz \\
3599 MHz
\end{tabular} & Page 1.23 &  &  & \[
\begin{aligned}
& -152 \\
& -152 \\
& -152 \\
& -152 \\
& -152 \\
& -152 \\
& -152 \\
& -152 \\
& -152 \\
& -150 \\
& -150 \\
& -150
\end{aligned}
\] & \begin{tabular}{l}
dBm \\
dBm
\end{tabular} & \\
\hline \begin{tabular}{l}
Noise Display with \\
Preamplifier (B25) \\
FSU 8: \(f_{\text {noise }}\) \\
3601 MHz \\
3999 MHz \\
4499 MHz \\
4999 MHz \\
5499 MHz \\
5999 MHz \\
6499 MHz \\
6999 MHz \\
7999 MHz
\end{tabular} & Page 1.23 &  &  & \[
\begin{aligned}
& -147 \\
& -147 \\
& -147 \\
& -147 \\
& -147 \\
& -147 \\
& -147 \\
& -147 \\
& -147
\end{aligned}
\] & \begin{tabular}{l}
dBm \\
dBm
\end{tabular} & \\
\hline \begin{tabular}{l}
Level accuracy with \\
Preamplifier (B25) \\
at \(128 \mathrm{MHz},-30 \mathrm{dBm}\)
\end{tabular} & Page 1.24 & -0.3 & - & +0.3 & dB & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response with Preamplifier (B25) \\
FSU 3 / 8 / 26 : ffresp \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
300 MHz \\
400 MHz \\
500 MHz \\
600 MHz \\
700 MHz \\
800 MHz \\
900 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
2990 MHz \\
3590 MHz
\end{tabular} & Page 1.24 & \[
\begin{aligned}
& -1 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6
\end{aligned}
\] &  & \[
\begin{aligned}
& +1 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6
\end{aligned}
\] &  & \\
\hline \begin{tabular}{l}
Frequency response with Preamplifier (B25) \\
FSU 8: \(\mathrm{f}_{\text {fresp }}\) \\
3610 MHz \\
4000 MHz \\
4500 MHz \\
5000 MHz \\
5500 MHz \\
6000 MHz \\
6500 MHz \\
6990 MHz \\
7990 MHz
\end{tabular} & Page 1.24 & \[
\begin{aligned}
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2
\end{aligned}
\] &  & \[
\begin{aligned}
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response elec. Attenuator (B25) \\
\(\mathrm{E}_{\mathrm{ATT}}=5 \mathrm{~dB}\) \\
\(\mathrm{f}_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
300 MHz \\
400 MHz \\
500 MHz \\
600 MHz \\
700 MHz \\
800 MHz \\
900 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
2990 MHz \\
3590 MHz
\end{tabular} & Page 1.27 & \[
\begin{aligned}
& -1 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6
\end{aligned}
\] &  & \[
\begin{aligned}
& +1 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency response elec. Attenuator (B25) \\
\(\mathrm{E}_{\text {ATT }}=5 \mathrm{~dB}\) \\
FSU 8: \(\mathrm{f}_{\text {fresp }}\) \\
3610 MHz \\
4000 MHz \\
4500 MHz \\
5000 MHz \\
5500 MHz \\
6000 MHz \\
6500 MHz \\
6990 MHz \\
7990 MHz
\end{tabular} & Page 1.27 & \[
\begin{aligned}
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2
\end{aligned}
\] &  & \[
\begin{aligned}
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response \\
elec. Attenuator (B25) \\
\(E_{\text {ATT }}=10 \mathrm{~dB}\) \\
\(f_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
300 MHz \\
400 MHz \\
500 MHz \\
600 MHz \\
700 MHz \\
800 MHz \\
900 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
2990 MHz \\
3590 MHz
\end{tabular} & Page 1.27 & \[
\begin{aligned}
& -1 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6
\end{aligned}
\] &  & \[
\begin{aligned}
& +1 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency response elec. Attenuator (B25) \\
\(E_{\text {ATT }}=10 \mathrm{~dB}\) \\
FSU 8: \(\mathrm{f}_{\text {fresp }}\) \\
3610 MHz \\
4000 MHz \\
4500 MHz \\
5000 MHz \\
5500 MHz \\
6000 MHz \\
6500 MHz \\
6990 MHz \\
7990 MHz
\end{tabular} & Page 1.27 & \[
\begin{aligned}
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2
\end{aligned}
\] &  & \[
\begin{aligned}
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
Frequency response \\
elec. Attenuator (B25) \\
\(E_{\text {ATT }}=15 \mathrm{~dB}\) \\
\(f_{\text {fresp }}\) \\
10 MHz \\
50 MHz \\
100 MHz \\
200 MHz \\
300 MHz \\
400 MHz \\
500 MHz \\
600 MHz \\
700 MHz \\
800 MHz \\
900 MHz \\
1000 MHz \\
1500 MHz \\
2000 MHz \\
2500 MHz \\
2990 MHz \\
3590 MHz
\end{tabular} & Page 1.27 & \[
\begin{aligned}
& -1 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6 \\
& -0.6
\end{aligned}
\] &  & \[
\begin{aligned}
& +1 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6 \\
& +0.6
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Frequency response \\
elec. Attenuator (B25) \\
\(E_{A T T}=15 \mathrm{~dB}\) \\
FSU 8: \(\mathrm{f}_{\text {fresp }}\) \\
3610 MHz \\
4000 MHz \\
4500 MHz \\
5000 MHz \\
5500 MHz \\
6000 MHz \\
6500 MHz \\
6990 MHz \\
7990 MHz
\end{tabular} & Page 1.27 & \[
\begin{aligned}
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2 \\
& -2
\end{aligned}
\] &  & \[
\begin{aligned}
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2 \\
& +2
\end{aligned}
\] & \begin{tabular}{l}
dB \\
dB
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & included in & Min. value & Actual value & Max. value & Unit & Tolerance \\
\hline \begin{tabular}{l}
3rd-order intercept point with elec..Att., \(\mathrm{f}_{\text {in }}\) \\
28 MHz \\
106 MHz \\
261 MHz \\
640 MHz \\
1000 MHz \\
1700 MHz \\
2500 MHz \\
3590 MHz \\
FSU 8: \\
3610 MHz \\
5000 MHz \\
7990 MHz
\end{tabular} & Page 1.29 & \begin{tabular}{l}
17 \\
17 \\
17 \\
20 \\
20 \\
20 \\
20 \\
20 \\
18 \\
18 \\
18
\end{tabular} &  &  & \begin{tabular}{l}
dBm \\
dBm
\end{tabular} & \\
\hline \begin{tabular}{l}
Attenuator accuracy, \(\mathrm{a}_{\mathrm{ATT}}\) : \\
0 dB \\
5 dB \\
10 dB \\
15 dB \\
20 dB \\
25 dB \\
30 dB \\
35 dB \\
40 dB \\
45 dB \\
50 dB \\
55 dB \\
60 dB \\
65 dB \\
70 dB \\
75 dB
\end{tabular} & Page 1.30 & \[
\begin{aligned}
& -9.8 \\
& -4.8 \\
& - \\
& +4.8 \\
& +9.8 \\
& +14.8 \\
& +19.8 \\
& +24.8 \\
& +29.8 \\
& +34.8 \\
& +39.8 \\
& +44.8 \\
& +49.8 \\
& +54.8 \\
& +59.8 \\
& +64.8
\end{aligned}
\] & \begin{tabular}{l}
\(\qquad\) \\
reference
\(\qquad\)
\end{tabular} & \[
\begin{aligned}
& -10.2 \\
& -5.2 \\
& - \\
& +5.2 \\
& +10.2 \\
& +15.2 \\
& +20.2 \\
& +25.2 \\
& +30.2 \\
& +35.2 \\
& +40.2 \\
& +45.2 \\
& +50.2 \\
& +55.2 \\
& +60.2 \\
& +65.2
\end{aligned}
\] & \begin{tabular}{l}
dB dB \\
dB
\end{tabular} & \\
\hline \begin{tabular}{l}
Electronic Attenuator accuracy ., \(\mathrm{a}_{\text {ATT }}\) \\
0 dB \\
5 dB \\
10 dB \\
15 dB \\
20 dB \\
25 dB \\
30 dB
\end{tabular} & Page 1.31 & \[
\begin{aligned}
& -0.2 \\
& +4.8 \\
& +9.8 \\
& +14.8 \\
& +19.8 \\
& +24.8 \\
& +29.8
\end{aligned}
\] &  & \[
\begin{aligned}
& +0.2 \\
& +5.2 \\
& +10.2 \\
& +15.2 \\
& +20.2 \\
& +25.2 \\
& +30.2
\end{aligned}
\] &  & \\
\hline
\end{tabular}

\section*{Contents - Chapter 2 "Adjustment"}
2 Adjustment ..... 2.1
Service Menu ..... 2.1
Entering the Password ..... 2.2
Alignment Functions ..... 2.2
Manual Adjustment ..... 2.3
Test Instructions ..... 2.3
Measuring Equipment and Accessories ..... 2.3
Adjusting the level measurement accuracy ..... 2.4
Adjusting the frequency accuracy ..... 2.6
Adjustment of Module Data ..... 2.8
Frequency response correction ..... 2.8

This page is left blank intentionally.

\section*{2 Adjustment}

The following chapter describes the adjustment of the reference sources as well as the softwarecontrolled adjustment of individual module data following module replacement.

The FSU permits the following manual adjustments:
- Adjustment of the 10 MHz reference oscillator which determines the frequency accuracy of the FSU
- Adjustment of the 128 MHz calibration source which determines the level accuracy of the FSU

The adjustment permits to maintain and restore the data integrity of the instrument.
Manual adjustments must be performed at an ambient temperature between \(+20^{\circ} \mathrm{C}\) and \(+30^{\circ} \mathrm{C}\) after the instrument has warmed up.

After the adjustment and an internal total calibration has been performed, the FSU is ready for use and offers full data integrity.

\section*{Service Menu}

The service functions for adjusting the boards are only useable after the entry of a password to prevent impairment of instrument functionality by unintended data changes.

SETUP menu:


The SERVICE softkey opens a submenu for selection of the service function

\section*{Entering the Password}

SETUP SERVICE submenu:


The ENTER PASSWORD softkey allows the entry of a password.
The FSU contains a variety of service functions which, if incorrectly used, can impair the functionality of the analyzer. These functions are normally not accessible and are only usable after the entry of a password.

The password permits change of data which must be modified for calibration or repair of the instrument (for example reference frequency adjustment, level adjustment, general board data). The password is "894129".

IEC/IEEE-bus command: SYST:PASS "<Password>"

\section*{Adjustment Functions}

\section*{Caution:}

The re-alignment should be carried out by qualified personnel since any change considerably influences the measurement accuracy of the instrument. This is the reason why the softkeys REF FREQUENCY, CAL SIGNAL POWER and SAVE CHANGES can only be accessed after entering a password.

SETUP SERVICE submenu:


The REF FREQUENCY softkey opens the data input for the adjustment of the reference frequency. Values can be selected between 0 and 255 (without option FSU-B4 OCXO) or between 0 to 4095 (with option FSU-B4 OXCO). They modify the setting of the associated D/A converter. The setting is first stored in the volatile memory. The SAVE CHANGES softkey is used to store it permanently in the nonvolatile memory.
IEC/IEEE-bus command: SENS:ROSC:INT:TUN 155


The CAL SIGNAL POWER softkey opens the data input for the adjustment of the currently set level of the calibration signal ( 0 dBm or -30 dBm , compare INPUT CAL softkey). Values can be selected between 0 and 255 . They modify the setting of the associated D/A converter. The setting is first stored in the volatile memory. The SAVE CHANGES softkey is used to store it permanently in the nonvolatile memory.

IEC/IEEE-bus command:

The SAVE CHANGES softkey stores the modifications in the nonvolatile memory of the instrument. Since these modifications considerably influence the measurement accuracy of the instrument, confirmation by the user is requested before storing.

IEC/IEEE-bus command: SENS:ROSC:INT:TUN:SAV

\section*{Manual Adjustment}

In the following, the measuring instruments and auxiliary means required for the manual adjustment of the FSU, the appropriate preparations of the instrument as well as the individual adjustments will be explained.

\section*{Test Instructions}
- The adjustment of the analyzer must be done after a warm-up time of at least 30 minutes and overall calibration. Only in this case can the compliance with the guaranteed data be ensured.
- Inputs for setting the FSU during measurements are shown as following:
[<KEY \(>\) ] Press a key on the front panel, eg [SPAN]
[<SOFTKEY>] Press a softkey, eg [MARKER -> PEAK]
[<nn unit>] Enter a value and terminate by entering the unit, eg [12 kHz]
Successive entries are separated by [:], eg. [ BW : RES BW MANUAL : \(\mathbf{3} \mathbf{~ k H z}\) ]

\section*{Measuring Equipment and Accessories}

Table 2-1 Measuring Equipment and Accessories for manual adjustment of the FSU
\begin{tabular}{|l|l|l|l|l|l|}
\hline Item & \begin{tabular}{l} 
Type of \\
equipment
\end{tabular} & Specifications recommended & \begin{tabular}{l} 
Equipment \\
recommended
\end{tabular} & \begin{tabular}{l} 
R\&S Order \\
No.
\end{tabular} & Use \\
\hline 1 & \begin{tabular}{l} 
Frequency \\
counter
\end{tabular} & \begin{tabular}{l} 
error < \(1 \times 10^{-9}\), \\
frequency range up to 10 MHz
\end{tabular} & \begin{tabular}{l} 
Advantest \\
R5361B \\
with option 23
\end{tabular} & & \begin{tabular}{l} 
Frequency Accuracy of \\
Reference Oscillator
\end{tabular} \\
\hline 2 & Signal generator & \begin{tabular}{l} 
frequency range to \(1 \mathrm{GHz}:\) \\
output level -10 dBm
\end{tabular} & SMHU & 0835.8011 .52 & \begin{tabular}{l} 
Calibration Source 128 MHz \\
Frequency Accuracy of \\
Reference Oscillator
\end{tabular} \\
\hline 3 & Power meter & & NRVD & 0857.8008 .02 & Calibration Source 128 MHz \\
\hline 4 & Power sensor & \begin{tabular}{l}
1 MHz to 3.6 GHz \\
RSS \(\leq 0.8 \%\) \\
Meter noise \(\leq 20 \mathrm{pW}\)
\end{tabular} & NRV-Z4 & 0828.3618 .02 & Calibration Source 128 MHz \\
\hline
\end{tabular}

\section*{Adjusting the level measurement accuracy}
\begin{tabular}{|c|c|}
\hline Test equipment: & \begin{tabular}{l}
- Signal generator (Section "Measurement Equipment", item 2): \\
frequency \(\quad 128 \mathrm{MHz}\) \\
level \(\quad-30 \mathrm{dBm}\) \\
- power meter (Section "Measurement Equipment", item 3) \\
- power sensor (Section "Measurement Equipment", item 4) \\
frequency \(\quad 128 \mathrm{MHz}\) \\
maximum power \(\quad P_{\max } \geq 1 \mu \mathrm{~W}\) \\
meter noise \(\quad \leq 20 \mathrm{pW}\) \\
RSS \(\leq 0.8 \%\) referred to indicated power \\
impedance \(Z=50 \Omega\)
\end{tabular} \\
\hline Power meter settings: & \begin{tabular}{l}
> connect power sensor to power meter and carry out function 'ZERO' when no signal is applied to the power sensor. \\
> connect power sensor to RF output of signal generator.
\end{tabular} \\
\hline Signal generator settings: & \begin{tabular}{l}
\begin{tabular}{ll} 
- frequency & 128 MHz \\
- level & \(-30 \mathrm{dBm} \pm 0.05 \mathrm{~dB}\)
\end{tabular} \\
> use power meter for exact level adjustment.
\end{tabular} \\
\hline Test setup: & > connect RF output of the signal generator to RF input of the FSU \\
\hline Overall calibration of FSU: & \begin{tabular}{l}
- [ PRESET] \\
- [ CAL : CAL TOTAL ]
\end{tabular} \\
\hline FSU settings: & \(-[\) FREQ : CENTER : \(\mathbf{1 2 8} \mathbf{~ M H z}]\)
\(-[\) SPAN : \(\mathbf{1 5} \mathbf{~ k H z}]\)
\(-[\) BW : RES BW MANUAL : \(\mathbf{1 0} \mathbf{~ k H z}]\)
\(-[\) BW : VID BW MANUAL: \(\mathbf{~ k H z}]\)
\(-[\) TRACE : DETEKTOR : RMS ]
\(-[\) AMPT : REF LEVEL :-20 dBm ]
\(-[\) AMPT : RF ATTEN MANUAL : \(\mathbf{1 0} \mathbf{~ d B ~}]\) \\
\hline Reference measurement & \begin{tabular}{l}
> set marker to peak of signal \\
- [ MKR SEARCH : PEAK ] \\
> set reference to peak of signal \\
- - [ MKR : REFERENCE FIXED ] \\
> switch internal reference generator to RF input \\
- [ SETUP : SERVICE : INPUT CAL ] \\
> set marker to peak of signal \\
\(-[\) MKR \(\Rightarrow\) : PEAK ]
\end{tabular} \\
\hline Adjustment: & The reading 'Delta [T1 FXD]' displays the difference between the output level of the signal generator and the level of the calibration source. \\
\hline
\end{tabular}


FSU settings:

Note:
The changed level of the calibration source will be used with the following total calibration.
- [ CAL : TOTAL CALIBRATION]
- [ CAL : CALIBRATION RESULTS ]
> Check the calibration results. The calibration must be performed with the status 'PASSED'.

\section*{Adjusting the frequency accuracy}
\begin{tabular}{|c|c|}
\hline Preparation: & The measurement can be performed either with a signal generator a connector RF INPUT (front of FSU) at 1 GHz or at connector EX REF OUT (rear of FSU) at 10 MHz using a frequency counter For the adjustment, the FSU must be set to internal reference. \\
\hline Note: & The measurement at 1 GHz can be performed with a lower frequency counter resolution in order to achieve a faster adjustment. \\
\hline \multicolumn{2}{|l|}{Preparations for adjustment with signal generator:} \\
\hline \multirow[t]{2}{*}{Test equipment:} &  \\
\hline & If the frequency accuracy of the signal generator is not sufficient, adjust the frequency with a frequency counter to the correct frequency before the adjustment. \\
\hline Test setup: & > connect RF output of the signal generator to RF input of the FSU \\
\hline FSU settings: & \begin{tabular}{l}
[ PRESET] \\
[ FREQ : CENTER : \(\mathbf{1}\) GHz ] \\
[SPAN : 0 Hz ] \\
[ BW : RES BW MANUAL : \(\mathbf{3 0} \mathbf{~ k H z}\) ] \\
- [ AMPT : REF LEVEL : -20 dBm ] \\
- [ AMPT : RF ATTEN MANUAL : 10 dB ] \\
- [ SETUP : REFERENCE INT / EXT ]
\end{tabular} \\
\hline & > toggle to internal reference (INT) \\
\hline Note: & Before the following measurement, the FSU must warm up for at leas 30 minutes to heat the reference oscillator. \\
\hline \multirow[t]{3}{*}{Measurement:} & \begin{tabular}{l}
> switch on marker frequency counting: \\
- [ MKR : SIGNAL COUNT]
\end{tabular} \\
\hline & \begin{tabular}{l}
Set the necessary resolution: \\
Model without OCXO (Option B4) \(1 \mathrm{GHz} \pm 100 \mathrm{~Hz}\) \\
- [ MKR : NEXT : CNT RESOL 10 HZ\(]\)
\end{tabular} \\
\hline & \begin{tabular}{l}
Model with OCXO (Option B4) \(\quad 1 \mathrm{GHz} \pm 30 \mathrm{~Hz}\) \\
- [ MKR : NEXT: CNT RESOL 1 HZ]
\end{tabular} \\
\hline
\end{tabular}

\section*{Preparation for adjustment with frequency counter:}
\begin{tabular}{|c|c|}
\hline Test equipment: & Frequency counter (Section "Measurement Equipment", item 1): error \(<1 \times 10^{-9}\) frequency range up to 10 MHz \\
\hline Test setup: & connect frequency counter to \(10-\mathrm{MHz}\) reference output of the FSU (rear panel) \\
\hline FSU settings: & \begin{tabular}{l}
[SETUP : REFERENCE INT / EXT ] \\
toggle to internal reference (INT)
\end{tabular} \\
\hline frequency counter settings: & Set the necessary resolution: model without OCXO (option FSU-B4): 1 Hz model with OCXO (option FSU-B4): \(\quad 0.1 \mathrm{~Hz}\) \\
\hline Note: & Before the following measurement, the FSU must warm up at least 30 minutes to heat the reference oszillator. \\
\hline Measurement: & \begin{tabular}{l}
> measure frequency with frequency counter: \\
nominal frequency: \\
model without OCXO (option FSU-B4) \(\qquad\) \(10 \mathrm{MHz} \pm 1 \mathrm{~Hz}\) \\
model with OCXO (option FSU-B4) \(\qquad\) \(10 \mathrm{MHz} \pm 0.3 \mathrm{~Hz}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Adjustment:}


FSU settings:

\section*{Important Note!}

The following adjustment changes the frequency of the internal reference source. Since this adjustment influences the frequency accuracy of the FSU, it is strongly recommended to perform this adjustment only if the frequency is not within the tolerance.
```

-[SETUP : SERVICE : ENTER PASSWORD : }894129 ENTER]
-[SETUP : SERVICE : REF FREQUENCY]

```
> The correction value for the reference frequency adjust will be displayed in the data entry field. Change the value with the step keys or spin wheel until the frequency counter reading or the marker count reading displays a value within the tolerance.

Store value in instrument
- [ SETUP : SERVICE : SAVE CHANGES ]
> Confirm message on display with 'YES' . The correction values will be stored in the non volatile memory of the boards.

\section*{Adjustment of Module Data}

All boards of the FSU contain EEPROMS for storage of board data.
In addition to some standard information such as module name, serial number, hardware status and date of manufacture, these stored data items contain important pieces of information within value tables from module pre-testing, e.g. frequency responses for module error data.
In order to match the data stored in EEPROMs on the respective modules to the complete instrument, an adjustment of module data is always performed automatically after replacing a module:

The module header is read from the EEPROMs and compared to the contents of the associated binary file stored on the hard disk. If the header coincides with the data from the binary file it is assumed that the binary file is an exactly mapping EERPOM and the contents of the binary file is loaded in the RAM.
After replacing a module, these data usually do no longer coincide. The FSU then detects a board replacement and starts the automatic board adjustment. The complete contents of the new module are read from the EERPOM and copied to the hard disk of the FSU. The existing calibration data (results from the latest total calibration) are deleted and the instruments displays UNCAL. Thus, the FSU must always be calibrated again after replacement of a module (Softkey CAL TOTAL).

\section*{Frequency response correction}

With some boards (see chapter 3, section "Module Exchange") an frequency response correction is necessary in addition to the automatic adjustment of module data. This correction is performed by means of a software.
For information when to on perform the frequency response correction see chapter 3, section "Module Replacement".

\section*{Contents - Chapter 3 "Repair"}
3 Repair ..... 3.1
Instrument Design and Function Description ..... 3.1
Block diagram ..... 3.1
Description of Block Diagram ..... 3.2
Module Replacement ..... 3.11
Overview of the Modules ..... 3.12
Replacing the Front Module Controller A90 ..... 3.13
Replacing the Lithium Battery on the Front Module Controller ..... 3.17
Replacing the Hard Disk A60 ..... 3.20
Replacing the LCD and DC/AC Converter in the Front Module ..... 3.21
Replacing the Keyboard Membrane or Mat on the Front Module ..... 3.23
Replacing the Labeling Panel on the Front Module ..... 3.25
Replacing the Floppy Disk Drive A30 ..... 3.26
Replacing the Power Supply A20 ..... 3.27
Replacing the Fan ..... 3.28
Replacing the RF Input Connector (Cable W1) FSU3/8. ..... 3.29
RF INPUT Connector (Casing Adapter) FSU26 ..... 3.30
Replacing the Motherboard A10 ..... 3.31
Replacing the RF Attenuator A40 ..... 3.33
Replacing the Module Key/Probe A80 and Vol./Phone Board A191 ..... 3.34
Replacing the RF Frontend A100 ..... 3.36
Replacing the Detector A120 ..... 3.37
Replacing the IF Filter A130 ..... 3.38
Replacing 8 GHz Converter Unit A160; FSU8 ..... 3.39
Replacing 26.5 GHz MW Converter Unit A160; FSU26 ..... 3.42
Replacing the OCXO A200 (Option FSU-B4) ..... 3.46
Replacing the LAN Interface A220 (Option FSU-B16) ..... 3.47
Replacing Combo Drive A381 (Option FSU-B18) ..... 3.49
Replacing the Flash Memory Cards A61, A62 (Option FSU-B20) ..... 3.50
Replacing the Electronic Attenuator A50 (Option FSU-B25) ..... 3.51
Replacing the External Generator Control A210 (Option FSP-B10) ..... 3.52
Troubleshooting ..... 3.53
Measuring Equipment and Accessories ..... 3.53
Troubleshooting Switch-on Problems ..... 3.54
Troubleshooting Problems with Booting ..... 3.56
Troubleshooting - Loading Module EEPROMs ..... 3.62
Troubleshooting via Selftest ..... 3.64
Troubleshooting RF Converter 1 ..... 3.77

\section*{Figures}
Fig. 3-1 Block diagram of whole unit. ..... 3.1
Fig. 3-2 Input attenuator ..... 3.2
Fig. 3-3 Conversion of the RF to the third IF from 20 Hz to 3.6 GHz ..... 3.3
Fig. 3-4 IF filter ..... 3.4
Fig. 3-5 Processing of measured data ..... 3.6
Fig. 3-6 Synchronization of 1st local oscillator ..... 3.7
Fig. 3-7 Sweep synthesizer. ..... 3.9
Fig. 3-8 Removing the front module controller. ..... 3.14
Fig. 3-9 Position of connectors on front module controller ..... 3.15
Fig. 3-10 Position of lithium battery and jumper 12 on front module controller ..... 3.18
Fig. 3-11 Position of connectors on front module controller ..... 3.22
Fig. 3-12 Position of connectors on front module controller ..... 3.24
Fig. 3-13 Pin assignments of PROBE POWER connector ..... 3.35
Tables
Table 3-1 Overview - module replacement ..... 3.12

\section*{3 Repair}

This chapter describes the design of the FSU, simple measures for repair and troubleshooting and the replacement of modules. For troubleshooting and diagnosis, a selftest is available, which permits to poll diagnostic voltages of the modules and indicate limit violations.

The firmware update and the installation of options are described in chapter 4 of this service manual.

\section*{Instrument Design and Function Description}

A detailed schematic of the FSU design will be presented in the block diagrams below and in the exploded views (see also chapter 5).
The following function description of the instrument refers to the block diagram.

\section*{Block diagram}
see also chapter 5, illustrations, for a detailed block diagram.


Fig. 3-1 Block diagram of whole unit

\section*{Description of Block Diagram}

The FSU is a triple-conversion superhet receiver (double-conversion for receive frequencies >3.6 GHz) for the frequency range 20 Hz to \(3.6 \mathrm{GHz}, 8 \mathrm{GHz}\) or 26.5 GHz (depending on the instrument model). The signals are processed by one RF board (two for models \(>3.6 \mathrm{GHz}\) ), one IF board, one signal detection board and a controller comprising a Pentium industry PC, an I/O interface and a graphic controller. The instrument can be upgraded to meet future requirements by retrofitting options in the analog and digital sections.

The input signal is reduced in level by the attenuator and routed to the RF modules depending on the instrument type. In instruments with option FSU-B25 (electronic attenuator), this module follows in the signal path. In 3.6 GHz models the attenuator is followed by the RF converter, in the high-frequency models a diplexer is connected in between. The high-frequency signal component \(>3.6 \mathrm{GHz}\) is routed to the microwave converter module following the diplexer. The IF module is the same in all instrument models, likewise the signal path through signal detection to the display.

The internal reference and calibration signals are generated in the frequency and level reference part on the synthesizer board. Here the 128 MHz reference frequency is generated and made available to the instrument as a reference frequency, and a level-controlled output signal is generated as an internal level reference for instrument calibration.

A detailed description of the modules is given in the following.

\begin{abstract}
Attenuator
The RF signal passes from the input connector via the input switch to the attenuator, which can be set. The input signal is applied to the switch as well as a 128 MHz signal which has a close-tolerance level of -30 dBm for calibration purposes or 0 dBm for the selftest of the instrument. Two different attenuators are used: the 8 GHz attenuator in the FSU 3 and FSU 8, and the microwave attenuator up to 26 GHz . The two attenuators switch in steps of 5 dB and have maximum total attenuation of 75 dB and an AC coupling that can be bypassed. The lower limit frequency of the AC coupling is 1 MHz with the 8 GHz attenuator and \(<10 \mathrm{MHz}\) with the attenuator in the FSU 26.
\end{abstract}


Fig. 3-2 Input attenuator

\section*{Electronic Attenuator (Option FSU-B25)}

The electronic attenuator is fitted in the signal path behind the attenuator. It consists of a mechanical 5 dB attenuator pad, an electronic input attenuator, which can be switched from 0 to 30 dB in steps of 5 dB , and a switchable 20 dB preamplifier to reduce the noise figure of the FSU.

\section*{RF to IF Conversion for Frequencies < 3.6 GHz - RF Converter}

The RF converter is used to convert the reception range from 20 Hz to 3.6 GHz to a low intermediate frequency of 20.4 MHz .
The balanced input mixer first convertsthe input signal to an intermediate frequency of approx. 4.63 GHz . The symmetric design reduces second-order intermodulation.

The first local oscillator in the frequency range 4.63 to 8.23 GHz is implemented with a YIG tuned oscillator. This oscillator is synchronized via several dividers to the signal from the synthesizer module ( 600 to 620 MHz ). The balanced output of the first mixer is amplified with two bipolar transistors to avoid \(1 / f\) noise. This balanced signal is fed to a three-stage filter with dielectric resonators. Flatness and group delay of the filter are optimized for broadband vector analysis in a bandwidth of 30 MHz . The filter feeds a second mixer, which converts the signal to the second IF of 404.4 MHz . The balanced output is amplified with two amplifiers to reduce intermodulation products. The output signal from the two amplifiers is combined in a transformer to an unbalanced signal. Due to the symmetric design there is no need for transformers in the mixers so that the conversion loss is reduced.

The second IF can be filtered to a bandwidth of 10 or 20 MHz using two five-stage filters with ceramic resonators. A bypass for a 50 MHz bandwidth (=3-dB bandwidth of the first IF Filter) can be selected also. The signal is fed to the third mixer via an attenuator pad that can be switched in steps of 1 dB . With 30 MHz FFT span the K2 of the \(3^{\text {rd }}\) mixer causes spurious within the band. Therefore the level has to be reduced before this mixer stage if high input levels are used ( \(>-25 \mathrm{dBm}\) ). The attenuator can be used also to drive the input mixer up to +10 dBm , thus allowing for a better dynamic range in phase noise or spurious measurements with a large carrier offset (>1 MHz).

Fast overload detectors are used to detect compression in the stages of the first and second intermediate frequency. The bandwidth of these detectors is above 100 MHz so that pulse signals can be detected as well with a preselector of the same width. The output signal of the detector on the second IF is also used with a logarithmic amplifier as an RF power trigger with a dynamic range of 70 dB .


Fig. 3-3 Conversion of the RF to the third IF from 20 Hz to 3.6 GHz

\section*{RF to IF Conversion for Frequencies > 3.6 GHz - MW Converter}

The high-frequency models of the FSU (frequency range \(>3.6 \mathrm{GHz}\) ) also comprise a microwave converter board. After the RF attenuator, the input signals are fed to the microwave converter and split up in the diplexer to frequencies below 3.6 GHz and above 3.6 GHz . Signals below 3.6 GHz are forwarded to the RF converter like in the FSU 3. Signals above 3.6 GHz are taken via the YIG filter to the mixer, where they are directly converted to the \(2^{\text {nd }}\) IF of 404.4 MHz .

The first LO converts the input frequency to the 404.4 MHz IF. For this purpose the LO signal ( 4 GHz to 8 GHz ) generated in the RF converter is amplified to the required LO level. The FSU 26 has two additional doubler stages which can be bypassed and generate the LO signal for conversion to 26.5 GHz.

The basic model is equipped with the necessary interfaces (IF input 404.4 MHz , LO output 4 to 7.6 GHz ) for extending the frequency range by simply adding a microwave converter.

\section*{IF Filter - Module}

The RF converter is followed by the analog IF filter module :


Fig. 3-4 IF filter
The FSU offers resolution bandwidths from 1 Hz to 20 MHz in steps of \(1 / 2 / 3 / 5\). For the bandwidths above 5 MHz , the selection filter is provided in the RF converter. There is no selection at the 20.4 IF , a logarithmic amplification to 404.4 MHz is performed.
The tunable bandwidths 100 kHz to 5 MHz are at the 3 rd IF ( 20.4 MHz ) on the IF filter module. The bandwidths 100 kHz to 5 MHz are provided by 5 LC circuits.
The step gain can be set from -20 to 50 dB in 0.1 dB steps and is adjusted as a function of the reference level and the input attenuation.
The IF filters are followed by a log detector to obtain the dynamic range of the display.
A limiting amplifier in the log amp provides the TTL output for the frequency counter.
With a 10 bandwidth the LC filters are bypassed, however step gain and log amp are used as with the analog bandwidths between 200 kHz and 5 MHz .

For the digital resolution filters from 10 Hz to 100 kHz , the 20.4 MHz IF signal at the IF filter output is routed to the A/D converter. With bandwidths below or equal to 30 kHz , a two-stage crystal filter is used to prevent the step gain and the ADC from being overdriven. This filter can be tuned from about 2.5 to 70 kHz in bandwidth. With the bandwidths 50 kHz and 100 kHz , the LC filter is set to about 400 kHz for the same reason.

An additional path without any filtering is used for the broadband vector analysis. The step gain is optimized for low distortion, as with a bandwidth of 30 MHz at a center frequency of 20.4 MHz the harmonics of the IF are also present at the input of the ADC.

The FSU contains an AM/FM demodulator on the IF filter. In the spectrum analysis mode, the signal applied at the position of the reference marker can be demodulated during the sweep. For this purpose, the FSU stops the frequency sweep for a selectable period of time and demodulates the input signal. The volume is set using the spinwheel on the front panel (AF OUTPUT). The demoduator bandwidth corresponds to that of the input filter in the case of digital filters. To ensure a good reception, the \(30-\mathrm{kHz}\) filter should be used, the filter preceding the demodulator being at approx. 70 kHz then.

\section*{Processing of Measured Data - Detector Board}

The chapters below explain the signal and data paths required for result processing in the various operating modes:


Fig. 3-5 Processing of measured data

\section*{Spectrum Analysis Using an RBW \(\boldsymbol{> 1 0 0} \mathbf{~ k H z}\)}

In this mode only the analog resolution filters on the IF filter board are used. The signal applied to the A/D converter via the input IF/Video is therefore already a log video signal. The signal is continuously sampled at 32 MHz in the ADC and digitized.
The signal path is now directly routed to DCON.
In the DCON, the data are directly applied to the noise filter. The noise filter serves for limiting the video bandwidth or for averaging the noise content. The signal path is routed to the detector logic where the results are processed, ie peak max, peak min, sample, average and RMS values as well as the number of measured max. peak, min. peak, sample, average, RMS and quasi peak values are determined.

With measurement data rates \(>1 \mathrm{MHz}\), detector data have to be stored in the measurement RAM because online storage is no longer possible at these high speeds. Upon completion of the sweep, the sweep data are read by the host from the measurement RAM, processed and displayed.

\section*{Spectrum Analysis Using an RBW \(\leq 100\) kHz}

In this operating mode the resolution bandwidths are generated digitally with the aid of the DDC (digital down converter). The IF filter module provides an IF signal pre-filtered at 20.4 MHz . The DDC mixes the input signal into the complex baseband using an NCO, and then filters the obtained I/Q signal via a HDF (high decimation filter) and a FIR (finite impulse response) filter. The magnitude and phase are calculated from the I/Q data and transferred to a second gate array in the DCON. Same as in operating mode RBW \(>100 \mathrm{kHz}\) the signal is video-filtered and weighted depending on the set detector.

\section*{FFT Bandwidths}

In FFT bandwidth mode, the synthesizer is set to the desired frequency via the DCON which also generates the tuning voltages for the analog hardware. The signal path is routed via ADC, Corr RAM and DDC. The DDC first mixes the input IF into the baseband using an NCO, then the obtained I/Q signal is filtered in a HDF (high decimation filter) and FIR stage (finite impulse response). The I/Q output data are then stored by the DDC in the I/Q RAM. With data logging completed the I/Q data from the I/Q RAM are transferred to the host via DDC and PCI interface FPGA. The host then performs the FFT for this sweep section.

\section*{Video Bandwidths (VBW)}

The video filters of the FSU can be adjusted between 1 Hz and 10 MHz in steps of \(1 / 2 / 3 / 5\). They are designed as a digital lowpass filter for the video signal. The video bandwidth can either be coupled to the resolution bandwidth (= default setting) or manually set to a fixed value.

\section*{Detectors}

The FSU uses a detector for the positive peak (peak+) and one for the negative peak value (peak-). In the sample mode, the video signal can also be directly sampled by the A/D converter without a peak detector being required. Quasi-Peak, Average and RMS detectors are available in addition. The RMS detector forms the rms value of the input signal for one point in the display during the measurement time.

\section*{\(1^{\text {st }}\) Local Oscillator- RF Converter}

The \(1^{\text {st }}\) local oscillator is a YIG oscillator on the RF converter. It is synchronized via a fractional N divider to the synthesizer signal of \(600 \ldots 620 \mathrm{MHz}\) or \(20 \ldots 40 \mathrm{MHz}\). This signal can be set with very high resolution in steps of less than MHz . With 20 to 40 MHz a whole octave can be swept with one divider setting. This setting is used with a fast sweep time over big spans. The 600 setting is used with spans below 200 MHz because of the better phase noise.


Fig. 3-6 Synchronization of 1st local oscillator

\section*{\(2^{\text {nd }}\) Local Oscillator - Synthesizer}

The second local oscillator is a DRO (dielectric resonator oscillator) on the Synthesizer board at 4224 MHz . This oscillator is synchronized to a harmonic of the \(3^{\text {rd }} \mathrm{LO}(384 \mathrm{MHz})\). This type of oscillator features excellent phase noise values.

\section*{\(3^{\text {rd }}\) Local Oscillator- Synthesizer}

The third oscillator is a VCO with ceramic resonator, which is synchronized via a mixer to the third harmonic of the crystal oscillator at 128 MHz .

\section*{Reference Frequency 128 MHz - Synthesizer}

This reference is generated on the synthesizer board. To ensure perfect phase noise performance an SC cut crystal is used as resonator. The oscillator is synchronized with a bandwidth of app. 30 Hz to the internal 10 reference or to an external reference.

Harmonics of this signal are used for the synchronization of the \(3^{\text {rd }}\) local oscillator and the sweep oscillator 600 to 620 MHz .

It is also used for generation of the 128 calibration signal via automatic level control. The level can be switched between 0 dBm and -30 dBm and adjusted with a D/A converter.
A 4:1 divider generates the 32 clock for the detector board ( \(A / D\) converter ).

\section*{Reference Frequency 10 MHz - Synthesizer}

The reference frequency is generated by an OCXO, the frequency is adjustable by a D/A converter. If the external reference input is used, this OCXO is switched off and the external signal is used instead.

\section*{OCXO Reference (Option FSU-B4)}

The FSU contains as an option FSU-B4 an oven-controlled reference oscillator with extra low aging and improved phase noise at \(10-\mathrm{Hz}\) offset. If the option is fitted, this OCXO is used instead of the OCXO on the synthesizer board. If an external reference is used, both OCXOs are switched off. The heater of the B4 option stays on.

\section*{Sweep VCO - Synthesizer}

The sweep VCO on the synthesizer board is used to synchronize the YIG oscillator on the RF converter. An oscillator with ceramic resonator at approx. 600 MHz is used. This VCO can be tuned over quite a small range of about 20 MHz for good phase noise performance. A bigger tuning range would reduce the quality factor of the resonator. The oscillator is mixed with a comb line of the 128 crystal oscillator to an IF between 20 and 40 MHz . Via this IF the VCO is synchronized to a digitally generated signal from a fractional \(N\) divider. This signal can be tuned in steps of smaller than 1 mHz in frequency. For small spans with a good phase-noise performance, the YIG oscillator is synchronized to the VCO, for fast sweeps and a big span to the IF.


Fig. 3-7 Sweep synthesizer

\section*{Front Panel}

The front panel consists of a mounting plate which accommodates the LCD, the keyboard mat with the membrane and the spinwheel. The case panel incorporates the front-module controller.

\section*{LCD}

The color LCD provides a visible output of any information, measurements etc. to the user. The resolution of the LCD is 800 * 600 pixels (SVGA).
The display incorporates a cold cathode tube for the illumination. The high voltage required for this purpose is generated in an extra DC/AC converter mounted next to the display on the mounting plate and connected both to the display and the controller board via a cable.

\section*{Keyboard}

The keyboard consisting of a keyboard mat and a membrane releases a contact when the rubber key is pressed. Two LEDs for the STANDBY/ON key (yellow for STANDBY/green for ON) are also accommodated on this membrane.
The key evaluation and LED control are effected via a film cable connector on the controller board. Like the control of the two LEDs, it is controlled in a special microprocessor on the controller board by means of a matrix technique. This microprocessor permits to store the status of the STANDBY/ON key when switching off using the power switch.

\section*{Front module controller}

The front module controller contains all the necessary components on a board such as processor, memory chips (SIMM modules), I/O devices (ISA bus), lithium battery, IEC-bus controller (IEEE), two serial interfaces (COM1/2), a parallel interface (LPT), LCD graphics controller, external VGA monitor graphics interface (monitor) and an external keyboard connection (keyboard PS/2).
In addition, a floppy controller for an external floppy disk drive and an IDE hard disk controller are integrated on the controller board.

\section*{Hard disk}

The hard disk is screwed to the rear panel of the front module controller and connected to the printed circuit board via a ribbon cable.

\section*{Power Supply Module}

The power supply module provides all currents necessary for the operation of the FSU. It can be switched off by means of the power switch on the rear panel.
The power supply module is a primary-clocked switching power supply with Power Factor Correction (PFC) and Standby circuit (+12 V Standby).

On the secondary side, it generates DC voltages (+3.3 V; +5.2 V; +6 V; +8 V; +12 V; +12 VFAN; +12 V Standby; +28 V; -12 V).

The control signal STANDBY/ON controlled by the front module controller (depending on the operating key STANDBY/ON on the front of the instrument frame) activates the power supply. In standby operation, it only supplies the \(12-\mathrm{V}\)-standby voltage for the crystal oscillator and the LED STANDBY on the front panel.

The secondary voltages are open-circuit-proof and short-circuit-proof with respect to ground and each other.
An overtemperature protective circuit is additionally installed to prevent overheating. This status is taken to the front module controller via a status signal (OT).

\section*{Fuses}

Two fuses are also fitted in the power supply as a means of fire protection.
Note: These fuses are not accessible to the user from outside and are only blown in the case of a serious fault of the power supply (servicing required!).

\section*{Motherboard}

The motherboard generates the -6 V supply for the analog boards with an integrated DC/DC converter. The noise source output ( 28 V Noise Source) is also generated on this board.
All external supplies (Probe, Keyboard,...) are short-circuit-protected by polyswitches (currentdependent, self-opening and closing fuses).

On the motherboard, a circuit for temperature-dependent instrument fan control is also implemented.

\section*{Probe / Keyboard}

The probe / keyboard board is located at the front of the instrument frame and accommodates the external interfaces KEYBOARD (PS/2) and PROBE POWER connector. For connection with the motherboard a ribbon cable is used.

\section*{Volume / Phones}

The volume/phones board is located on the front mounting plate and accommodates the external interfaces PHONES (headphones connector) and the volume control (rotary encoder) for the AF demodulator.
For connection with the motherboard a ribbon cable is used.

\section*{Module Replacement}

This section describes in detail the replacement of modules. Section 5 provides information on how to order spare parts; it contains the list of mechanical parts with the order numbers and the illustrations on board replacement.
Note: \(\quad\) The numbers indicated in brackets refer to the position in the list of mechanical parts in Section 5.
These items correspond to the item numbers in the illustrations on board replacement (see also Section 5):
1129.9003 (FSU Basic Model, Its. 1-450), 1093.4537 (Dig. Basic Unit, Its. 500-750), 1093.4708 (Display Unit, Its. 800-950), 1129.6791 (Option FSU-B4, Its. 1110-1130). 1144.9500 (option FSU-B16, Its. 1240-1350) 1144.9300 (option FSU-B25, Its. 1400-1460) 1145:0259 (option FSU-B18, Its. 1500-1560) 1129.7246 (option FSP-B10. Its. 1600-1630) 1155:1612 (option FSU-B20, Its. 1700-1730)
Note: The words "left" and "right" in the manual always refer to the front view of the instrument.

- Please note the safety instructions at the beginning of this manual.
- Disconnect the instrument from the mains before opening the case.
- Protect the replacement site against electrostatic discharge to avoid damage to electronic components of the modules.

The following two methods of ESD protection may be used together or separately:
- Wrist strap with cord to ground connection
- Conductive floor mat and heel strap combination
- Put the instrument on the front handles before loosing the rear feet and the tube to avoid damage to the instrument.
- When mounting the tube take care not to damage or pull off cables.

\section*{Overview of the Modules}

Table 3-1 Overview - module replacement
\begin{tabular}{|c|c|c|c|}
\hline Module & \multicolumn{3}{|l|}{Required tests and adjustments after replacement} \\
\hline & Function tests and system error correction & Adjustment & Other \\
\hline Front module controller & \begin{tabular}{l}
SYSTEM MESSAGES/ \\
SELFTEST / CAL
\end{tabular} & & DOS/BIOS update \\
\hline Lithium battery & \begin{tabular}{l}
SYSTEM MESSAGES/ \\
SELFTEST / CAL
\end{tabular} & & Cold boot \\
\hline Hard disk & SYSTEM MESSAGES/ SELFTEST / CAL & & Cold boot / FW update \\
\hline LCD / DC/AC-converter & & & \\
\hline Keyboard membrane or mat & & & \\
\hline Labeling panel & & & \\
\hline Floppy disk drive & Check of directories & & \\
\hline Power supply & SYSTEM MESSAGES/ SELFTEST / CAL & & \\
\hline Fan & & & \\
\hline RF-Input connector & SELFTEST / CAL & Frequency response & \\
\hline Motherboard & SYSTEM MESSAGES/ SELFTEST / CAL & & EEPROM entry \\
\hline RF-Attenuator & SYSTEM MESSAGES/ SELFTEST / CAL & Frequency response & \\
\hline Key probe and Vol./Phone & Voltage / keyboard / volume & & \\
\hline RF Converter & \begin{tabular}{l}
SYSTEM MESSAGES/ \\
SELFTEST / CAL
\end{tabular} & Frequency response & \\
\hline Detector & SYSTEM MESSAGES/ SELFTEST / CAL & & \\
\hline IF-filter & \begin{tabular}{l}
SYSTEM MESSAGES/ \\
SELFTEST / CAL
\end{tabular} & Frequency accuracy/ cal. source & \\
\hline MW-Converter & \begin{tabular}{l}
SYSTEM MESSAGES/ \\
SELFTEST / CAL
\end{tabular} & Frequency accuracy/ frequency response & \\
\hline OCXO FSU-B4 & SYSTEM MESSAGES/ SELFTEST / CAL & Frequency accuracy & \\
\hline External Generator Control FSP-B10 & SYSTEM MESSAGES/ SELFTEST / CAL & & \\
\hline LAN Interface FSU-B16 & & & \\
\hline Removable HD FSU-B18 & & & \\
\hline Flash Disk FSU-B20 & & & \\
\hline Electr. Attenuator FSU-B25 & & & \\
\hline Electronic Attenuator/ Preamp FSU-B25 & SYSTEM MESSAGES/ SELFTEST / CAL & Frequency response & \\
\hline
\end{tabular}

\section*{Replacing the Front Module Controller A90}
(see chapter 5, spare parts list, item 570 and illustrations 1129.9003 and 1093.4537)
The front module controller is mounted behind the front panel.

\section*{Opening the Instrument and Removing the Front Panel}
> Switch off the instrument and pull the mains plug.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by pushing off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
> Remove the front panel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.


\section*{Caution!}

Note that the connecting cables are still connected to the controller.
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.
Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.

\section*{Removing the Front Module Controller}
> Unscrew the ten screws with washers (590) of the front module controller board and take out the front module controller as follows (see also Fig. 3-9):

Note: \(\quad\) The front module controller is tightly inserted on the motherboard. It can be pulled off towards the front using the slots at the bottom of the mounting plate. Carefully push the board towards the front step by step using a flat, blunt tool.

\section*{Caution:}

Do not insert the tool too far into the slots and press only against the pc board! To pull out the board lever off at all slots alternately. The board must not be bent!


Fig. 3-8 Removing the front module controller

\section*{Installing the New Front Module Controller and Completing the Instrument}
> Carefully plug the new front module controller to the motherboard and fasten using the ten screws with washers (590).
> Carefully insert the cable connectors to the controller board, taking care not to reverse the polarities (see Fig. 3-10).


Fig. 3-9 Position of connectors on front module controller
> Rotate the front panel into the instrument and fasten using four countersunk screws (610) in the front frame.


\section*{Caution!}

Make sure to route the cables properly.
> Install the labeling panel (270).
> Mount the 2 front handles (420) on the instrument using the 4 screws (430).
> \(\mathrm{FSU3} / 8\) up to delivery date 2002:
Mount volume control knob by tightening the screw and mounting the hood.

\section*{Putting into Operation}
> Connect the instrument to the mains and switch on the power switch. The instrument is now in standby mode.
> Insert a floppy disk with DOS and BIOS-Update in the floppy disk drive.
> Switch on the FSU and wait until the first beep. Press the key "FILE". The BIOS update starts.
> During the programming of the flash EEPROM the FSU must not be switched off.
> Follow the message indicated on the display, then switch off and on the FSU.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then- [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]

\section*{Replacing the Lithium Battery on the Front Module Controller}
(see chapter 5, spare parts list, item 775 and illustrations 1129.9003 and 1093.4537)
The lithium battery is accommodated on the front module controller board behind the front panel.


\section*{Caution!}

Lithium batteries must not be exposed to high temperatures or fire.
Keep away from children.
If the battery is replaced improperly, there is danger of explosion. Only replace the battery by R\&S type (see chapter 5, spare parts list, item 775).

Lithium batteries are hazardous waste and must be disposed of in dedicated containers.

\section*{Opening the Instrument and Removing the Front Panel}
> Switch off the instrument and pull the mains plug.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> Remove volume control knob (Option FSU-B3) by pushing off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
> Remove the front panel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.


\section*{Caution!}

Note the connecting cables are still connected to the controller.

Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.

Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.

\section*{Removing the Lithium Battery}
> Pull off jumper JP12 on the front module controller.
> Remove the mechanical lock (cable clamp). Carefully unsolder the negative terminal first and then the positive terminal using the soldering iron (medium temperature). Then take out the battery.

Note: The lithium battery is of the type 3.4 V ( \(\varnothing 15 \mathrm{~mm}\) * 25 mm ) with soldering lug terminals (R\&S ordering number 0565.1687.00.)


Fig. 3-10 Position of lithium battery and jumper 12 on front module controller

\section*{Installing the New Battery and Completing the Instrument}
> Shorten the connecting wires of the new battery to a right length and replace with the correct polarity.


\section*{Warning!}

Do not short-circuit the battery!
> If necessary, replace the mechanical lock (cable clamp). First solder the positive terminal to the PC board, then the negative terminal.
> Plug jumper JP12 to position 1 and 2 on the front module controller (position before battery replacement).
> Rotate the front panel back into the instrument and fasten using four countersunk screws (610) in the front frame.


\section*{Caution!}

Make sure to route the cables properly.
> Install the labeling panel (270).
> Mount the 2 front handles (420) again using the 4 screws (430).
> FSU3/8 up to delivery date 2002:
Mount volume control knob by tightening the screw and mounting the front hood.

\section*{Putting into Operation}
> Connect the instrument to the mains and switch on the power switch. The instrument is now in standby mode.
> After battery replacement a cold boot is necessary. Press the decimal point key while switching on the instrument using the ON/STANDBY key until the FSU is beeping.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results: - [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]

\section*{Replacing the Hard Disk A60}
(see chapter 5, spare parts list, item 710, and illustations 1129.9003 and 1093.4537)
The hard disk is located between the front module and the boards.
The spare part contains the complete software.

\section*{Opening the Instrument and Replacing the Hard Disk}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and pull off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Disconnect the ribbon cable (720) at the hard disk.
> Unscrew the two countersunk screws (740) on the hard disk mounting plate (730).
> Take the hard disk (710) with the mounting plate (730) out of the FSU.
> Unscrew the four countersunk screws (750), remove the hard disk and mount a new hard disk to the mounting plate (730).

\section*{Installing the New Hard Disk and Putting into Operation}
> Mount the hard disk with the mounting plate into the instrument using two screws (740).
Note: Be careful with the lower cover plate locking in the concerning opening.
> Connect the ribbon cable (720) to the hard disk.
Note: Connect cable according to illustration 1093.4537 in chapter 5.
> Place the top cover (240) onto the instrument and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and fasten the 4 rear-panel feet (450) using screws.
> Connect the instrument to the mains and switch on the power switch. The instrument is now in standby mode.
> After replacement of the hard disk a cold boot is necessary. Press the decimal point key while switching on the instrument with the ON/STANDBY key until the FSU beeps.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]

\section*{Replacing the LCD and DC/AC Converter in the Front Module}
(see chapter 5, spare parts list, items 600 and 870, and illustrations 1129.9003, 1093.4537, 1093.4708)
The LCD is accommodated on the mounting plate together with the associated DC/AC converter. It is connected to the front module controller via cables, which can also be replaced individually. For replacement proceed as follows:

\section*{Opening the Instrument and Removing the Front Module}
> Switch off the instrument and pull the mains plug.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by taking off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
> Remove the front panel with keyboard and display (600, 620, 630, 640, 650, 660) to the front and rotate it to the top of the instrument.


\section*{Caution!}

Note the connecting cables are still connected to the controller
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.

Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.
> Place the front module with the keys onto a clean surface.

\section*{Removing the DC/AC Converter}
> Pull off the connecting cable from the display to the DC/AC converter (870).
> Remove the DC/AC converter (870) by loosening the two screws (890) with the washers (900).

\section*{Removing the LCD}
> Unscrew two screws with washers (960) and plug off the display cable (950).
> Unscrew the four screws at the display (930) and remove the display.

\section*{Installing the New LCD and/or DC/AC Converter and Putting into Operation}
> Insert new LCD and/or DC/AC converter in the reverse order, connect all connecting cables in the correct position and replace all screws.
> Place the front panel with the keys on the top of the instrument so that the cables can be connected to the front module controller.
> Carefully plug the cable connectors to the controller board without reversing the polarities.


Fig. 3-11 Position of connectors on front module controller
> Rotate the front panel back into the instrument and fasten using four countersunk screws (610) in the front frame.


\section*{Caution!}

Make sure to route the cables properly.
> Install the labeling panel (270).
> Mount the 2 front handles (420) again using the 4 screws (430).
> FSU3/8 up to delivery date 2002:
Mount volume control knob by tightening the screw and push on the front hood.
> Connect the instrument to the mains, switch on the power switch and press the ON key.

\section*{Replacing the Keyboard Membrane or Mat on the Front Module}
(see chapter 5, spare parts list item (630) and (640), and illustrations 1129.9003, 1093.4537)
The keyboard membrane is the contact film for the rubber keys (mat) behind the labeling panel and the keyboard frame.

\section*{Opening the Instrument and Removing the Front Panel}
> Switch off the instrument and pull the mains plug.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by taking off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
> Remove the front panel with keyboard and display (600, 620, 630, 640, 650, 660) towards the front and rotate it to the top of the instrument.


\section*{Caution!}

The connecting cables are still connected to the controller .
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.

Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.

\section*{Removing the Membrane}
> Place the front panel onto a clean surface with the keys pointing upwards.
> Pull off the knob (650) of the spinwheel.
> Loosen the 10 countersunk screws (660) and remove the keyboard frame (620).
> The keyboard membrane (640) as well as the mat (630) can now be replaced.

\section*{Installing the New Membrane and Completing the Instrument}
> Insert the new mat (630) into the keyboard frame (620) from the back.
Note: \(\quad\) The pins of the mat must be inserted into the holes at the keyboard frame.
> Locate the new keyboard membrane (640) on the back of the mat (630).
Note: Push the foil cable of the membrane through the slit in the mounting panel.
The membrane must be positioned such as to insert the pins of the mat into the holes in the membrane.
> Locate the mounting plate with the display (600) onto the membrane (640) .
Note: \(\quad\) The display must be positioned such as to insert the pins of the mat into the holes in the mounting plate (800).
> Press the front panel together, turn the keys to the top and fasten in the keyboard frame using ten countersunk screws (660).
> Place the front panel with the keys onto the top of the instrument so that the cables can be connected to the front module controller.
> Carefully plug the cable connectors to the controller board without reversing the polarities.


Fig. 3-12 Position of connectors on front module controller
> Rotate the front panel back into the instrument and fasten in the front frame using four countersunk screws (610).

Caution!
Make sure to route the cables properly.
> Install the labeling panel (270).
> Mount the 2 front handles (420) using the 4 screws (430).
> FSU3/8 up to delivery date 2002:Mount volume control knob by tightening the screw and push on the front hood.
Connect the instrument to the mains, switch on the power switch and press the ON key.

\section*{Replacing the Labeling Panel on the Front Module}
(see chapter 5, spare parts list, items 270/280/290, and illustration 1129.9003)
The labeling panel is the outer front panel that carries the labeling. Every model has its own labeling panel (270, 280, 290).
> Switch off the instrument and pull the mains plug.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by pushing off the front hood and loosing the screws.
> Pull off the labeling panel (270) towards the front.
> Install the new labeling panel and reassemble the instrument in the reverse order.
> Connect the instrument to the mains, switch on the power switch and press the ON key.

\section*{Replacing the Floppy Disk Drive A30}
(see chapter 5, spare parts list, item (670), and illustrations 1129.9003, 1093.4537)

\section*{Opening the Instrument and Removing the Floppy Disk Drive}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Remove two screws (700) at the fan side of the FSU and carefully pull out the floppy disk drive (670) with the floppy mounting plate (680) pointing towards the top.

Note: \(\quad\) The connecting cable is still connected to the motherboard .
> Disconnect the cable at the floppy disk drive .
Note: Please note the correct direction of the cable (contact side).

\section*{Installing the New Floppy Disk Drive and Completing the Instrument}
> Unscrew the three screws with washers (700) and remove the floppy disk from the mounting plate (680) and mount a new disk drive (670) to the floppy mounting plate (680).
> Connect the cable (690) to the disk drive (note the contact side of the cable).
> Insert the floppy mounting plate (680) and fasten it to the fan side using two screws with washers (700).

Note: Please mount the floppy disk drive in the middle of the front-panel breakout.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Push the tube (410) onto the instrument and mount the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.

\section*{Function Test}
> Instrument is booting and the firmware is starting.
> Insert \(31 / 2^{\prime \prime}\) disk with any files.
> Press FILE key, then softkey FILE MANAGER and EDIT PATH.
> Enter " a " and ": " and confirm using the Enter key.
> The directory structure of the inserted disk must be displayed on the screen.

\section*{Replacing the Power Supply A20}
(see chapter 5, spare parts list, item 550, and illustration 1093.4537)
The power supply is fitted at the rear of the instrument frame.

\section*{Removing the Power Supply}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the rear.
> Unscrew the ten screws (560) at the rear of the power supply.
> Pull out the power supply approx. 20 mm towards the rear, slightly tilt towards the bottom and then pull out completely.

\section*{Installing the New Power Supply}
> Place the instrument onto the front handles and install the new power supply in the reverse order.
Note: Make sure that the 96 -contact connector to the MOTHERBOARD locks in place correctly.
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains and switch on.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]

\section*{Replacing the Fan}
(see chapter 5, spare parts list, item 15, and illustration 1129.9003)
The fan is fitted at the right side of the frame.

\section*{Opening the Instrument and Removing the Fan}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Remove the fan (15) by loosening the four screws.
> Disconnect the fan cable at the motherboard connector X35 (FAN) .

\section*{Installing the New Fan and Completing the Instrument}
> Connect the fan cable at the motherboard connector X35 (FAN)
> Mount the new fan using 4 screws.
Note: \(\quad\) Please note the direction of the airflow printed on the fan. The fan must blow the cold air into the instrument.

Make sure to route the cable so that it cannot get into the fan.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.

\section*{Replacing the RF Input Connector (Cable W1) FSU3/8}
(see chapter 5, spare parts list, item 295, and illustration 1129.900)
The RF input connector is fitted at the bottom right side of the front panel.
Depending on the frequency range different cables W1 are available.

\section*{Opening the Instrument and Removing the Cable W1}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by pushing off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Remove three countersunk screws (70) at the frame and 1 countersunk screw (70) at the connector mounting plate (60).
> Unscrew the cable W1 (295) to 7 GHz or W 1 (315) to 30 GHz at the RF attenuator (20) or (30).
> Remove the connector mounting plate (60) together with W1 and module Probe/Key (50) towards the front.

Note: \(\quad\) The module Probe/Key (50) is connected via a ribbon cable to the motherboard X80.
> Unscrew the four countersunk screws (350) and remove cable W1 together with mounting plate (330) or (340).

\section*{Installing the New Cable and Completing the Instrument}
> Put the mounting plate (330) or (340) onto the new cable W 1 and fasten using four countersunk screws (350), insert the mounting plate (60) into the instrument and screw it to attenuator (20) or (30).
> Screw three countersunk screws (70) to the instrument frame and one countersunk screw (70) to the mounting plate (60).
> Install the labeling panel (270).
> Mount the 2 front handles (420) again using the 4 screws (430).
> FSU3/8 up to delivery date 2002:
Mount volume control knob (Option FSU-B3) by tightening the screw and push on the front hood.
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Check frequency response according to chapter 1 and correct, if necessary.

\section*{RF INPUT Connector (Casing Adapter) FSU26}
(see chapter 5, spare parts list, Item 315, and illustration 1129.9003 sheet 2)
The input connector is at the bottom right of the front panel. There are different connectors depending on the frequency range of the instrument.

\section*{Opening the Instrument and Removing the Casing Adapter}
\(>\) Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the enclosure (410) towards the back.
> Remove the 4 screws at the left and right front handles (430) and take off front handles.
> Pull off front cover (290) towards the front.
> Remove 3 countersunk screws (70) from frame and 1 countersunk screw (70) from mounting plate (61).
> Unscrew input cable W1 (316) from attenuator (25).
> Pull out mounting plate (60) together with cable W 1 and the modules probe/key (50) and vol./phone board (43) towards the front.
Note: The probe/key (50) and vol./phone board (43) modules are connected to motherboard X80, X81 by means of a flat cable.
> Remove cable W1 together with mounting plate (340) after undoing 4 countersunk screws (350).
> Unscrew casing adapter (315) from cable W1 (316).

\section*{Installing the Casing Adapter and Completing the Instrument}
> Screw new casing adapter (315) to cable W1 (316).
> Feed mounting plate (340) onto cable W1, fasten it with 4 countersunk screws (350), fit it into the instrument together with mounting plate (61) and screw it to the attenuator (21).
> Fasten mounting plate (61) to instrument frame with 3 countersunk screws (70) and to mounting plate (61) with 1 countersunk screw (70).
> Remount 2 front handles (420) by means of 4 screws.
> Slide on enclosure (410) and screw on 4 rear-panel feet (450).
> Connect power cable, switch on power switch and press ON key.
> Start selftest and check if the result is correct:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start system error correction and check if the result is correct: - [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
- Check frequency response as described in Chapter 1 and correct it, if required.

\section*{Replacing the Motherboard A10}
(see chapter 5, spare parts list, item 510 and illustrations 1093.4495, 1093.4537)
The motherboard is located at the bottom side.

\section*{Opening the Instrument and Removing the Motherboard}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the three screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument on the side frame and remove all connecting cables to the boards.
> Pull out all boards towards the top of the instrument.
Note: The boards can be disconnected from the motherboard by carefully pressing from the bottom through the motherboard slots.
> Remove the power supply (550).
Unscrew the ten screws (560) at the rear of the power supply.
Pull out the power supply approx. 20 mm towards the rear, slightly tilt towards the bottom and then pull out completely.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by pushing off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Unscrew two countersunk screws (610) in the front frame each at the top and at the bottom.
> Remove the front panel with keyboard and display (600, 620, 630, 640, 650, 660) towards the front.

\section*{Caution:}

Note that the connecting cables are still connected to the controller .
> Pull off the connecting cables to the LCD, DC/AC illumination converter, keyboard membrane and spinwheel.
Note: When pulling off the connecting cables be careful with the cable connecting to the keyboard. It is a film cable which can only be disconnected after sliding up the lock of the film cable plug.
> Remove the front module controller (see chapter: Replacing the Front Module Controller A90)
> Remove the screws of all motherboard connectors at the rear panel. Unscrew the bolts (530) at the "COM" and "LPT" ports and (540) at "Monitor" port. Unscrew the nuts at "Noise Source" and "Ext. Trig" connectors and the bolts at the "IEC"-port.

Note: Do not change the bolts of the "Monitor" and the "LPT" or "COM" !
> Pull off the connecting cables at the motherboard (RF-Attenuator, fan, Floppy, Probe/Key, rear panel, ....).
> Unscrew five screws with washers at the bottom side of the motherboard.
> Carefully pull the motherboard (510) towards the front panel (approx. 15 mm ) and take it out of the instrument by swiveling down.

\section*{Installing the New Motherboard and Completing the Instrument}
> Install the motherboard in the instrument in the reverse order.
Note: Be careful when installing the motherboard in order not to cause damage to any components.
Make sure to connect the cables according to their labeling.
> Insert the front module controller, front panel, power supply, boards and cables, top cover, tube and rear-panel feet in the reverse order.
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Store the serial number of the instrument to the EEPROM:
- [ SETUP : SERVICE : ENTER PASSWORD "30473035" ], then input serial number of the instrument in HW-Info table (see also chapter 2, Section "Automatic Adjustment of Module Data").

\section*{Replacing the RF Attenuator A40}
(see chapter 5, spare parts list, item 20/30 and illustration 1129.9003 sheet 1 FSU3/8)
(see chapter 5, spare parts list, item 25 and illustration 1129.9003 sheet 2 FSU26)
The RF attenuator is fitted at the bottom side behind the RF input connector.

\section*{Opening the Instrument and Removing the RF Attenuator}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Place the instrument onto the left side and unscrew the RF cable or the diplexer (150) at the output of the RF attenuator.
> FSU3/8: Unscrew the two screws with washers (40) at the instrument frame.
Note: The RF attenuator is then only held via the RF cables at the front.
> FSU26: Unscrew the three screws with washers (28) at the instrument frame.
Note: The RF attenuator is then only held via the RF cables at the front.
> Hold the attenuator and disconnect RF cable W1 (295) on the FSU3/8 or cable W1 (316) on the FSU26 from the input of the RF attenuator.
> Carefully take out the RF attenuator and unscrew the flexible RF cable from the input.
> Disconnect ribbon cable from motherboard connector X41 on the FSU3/8 or at X40 on the FSU26.

\section*{Installing the New RF Attenuator and Completing the Instrument}
> Only FSU26: fasten new attenuator (25) to insulating plate (26) with 4 countersunk screws (27).
> Connect ribbon cable to motherboard connector X41 on the FSU3/8 or to X40 on the FSU26.
> Connect the flexible RF cable to the input of new RF attenuator (see label on cable)
> Install the new RF attenuator in the instrument and connect cable W1 (295) on the FSU3/8 or RF cable W1 (316) on the FSU26 to the input.
> Fasten the attenuator to the instrument frame using the two screws with washers (40).
> Fasten the RF cable to the RF output of the RF attenuator.
\(>\) Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Check frequency response according to chapter 1 and correct, if necessary.

\section*{Replacing the Module Key/Probe A80 and Vol./Phone Board A191}
(see chapter 5, spare parts list, items 43 and 50 and illustration 1129.9003
The boards are located behind the front-panel connectors Keyboard, Probe, Headphones and the volume control knob.

\section*{Opening the Instrument and Removing the Boards}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take out the tube (410) towards the back.
> Unscrew the four screws (430) of the front handles on both sides and take off the front handles.
> FSU3/8 up to delivery date 2002:
Remove volume control knob by pushing off the front hood and loosing the screw.
> Pull off the labeling panel (270) towards the front.
> Pace the instrument onto the left side so that its bottom side is accessible.
> Remove three countersunk screws (70) at the frame and 1 countersunk screw (70) at the connector mounting plate (60).
> Unscrew the input cable W1 (295) or (315) at the RF attenuator (20) or (30).
> Remove the mounting plate (60) completely with W1 and Probe/Key board (50) and option Vol./Phone Board (1040) towards the front.

Note: \(\quad\) The Probe/Key (50) and Vol./Phone boards (1040) are connected to the motherboard X80 and X81 via a ribbon cable.
> Disconnect the cables of the two boards from motherboard connector X80 and X81.
> Unscrew the three countersunk screws (55) and remove the board Key-Probe (50).
> Unscrew the three countersunk screws (1060) and remove the board Vol./Phone Board (1040) from mounting plate (60).

Unscrew the combi screw (1055) and the nut of the volume control at the mounting plate (1050) and remove Vol./Phone Board (1040) .

\section*{Installing the New Modules and Completing the Instrument}
> Fasten the new Key-Probe board (50) to mounting plate (60) using three countersunk screws (55).
> Fasten the new Vol./Phone board (1040) to the mounting plate (1050) using the nut of the volume control and one countersunk screw (1055). Mount Vol./Phone board (1040) to mounting plate (60) using three countersunk screws (1060).
> Connect the cables of the two boards to motherboard connectors X80 and X81.
> Carefully slide the complete mounting plate (60) back into the instrument.

Caution
Make sure to route the cables properly.
> Screw RF cable W1 (295) or (315) to the input of the RF attenuator (20) or (30).
> Mount three countersunk screws (70) to the instrument frame and one countersunk screw (70) to the mounting plate (60).
> Install the labeling panel (270).
> Mount the 2 front handles (420) using the 4 screws (430).
> FSU3/8 up to delivery date 2002:
Mount volume control knob by tightening the screw and push on the front hood.
> Mount the tube (410) and the 4 rear-panel feet (450).

\section*{Function Test}
> Connect an appropriate keyboard to the keyboard socket.
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> Simultaneously press the CTRL and ESC key on the keyboard, the Windows NT task bar will appear at the lower edge of the screen.
> Shift the cursor to MAINAPP using the trackball and click. The task bar will disappear.
> Measure the output voltages at the Probe connector (see Fig. 3-13).
> Test the function of headphones connector and volume control. Press the MKR key, press the MARKER DEMOD softkey. Noise can be heard in the loudspeaker, the volume can be changed using the VOLUME knob at the front panel. Connect headphones to the AF OUTPUT at the front panel. The loudspeaker is switched off and the noise can be heard in the headphones.

\begin{tabular}{|l|l|}
\hline Pin & Signal \\
\hline 1 & GND \\
\hline 2 & -12.6 V \\
\hline 3 & +15 V \\
\hline
\end{tabular}

Fig. 3-13 Pin assignments of PROBE POWER connector

\section*{Replacing the RF Frontend A100}
(see chapter 5, spare parts list, item 100, and illustration 1129.9003)
The module is located in the middle of the instrument.

\section*{Opening the Instrument and Removing the Board}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument on its side frame and remove all connecting cables to the board.
> Pull out board towards the top of the instrument.
Note: The board can be disconnected from the motherboard connector by carefully pressing from the bottom through the motherboard slots.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new board into the instrument and reconnect the cables.
Note: Please observe the labeling on the motherboard.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the enclosure (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Check frequency response according to chapter 1 and correct, if necessary, using the correction software.

\section*{Replacing the Detector A120}
(see chapter 5, spare parts list, item 110, and illustration 1129.9003)
The board is located in the front part of the instrument.

\section*{Opening the Instrument and Removing the Board}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument onto its side and remove all connecting cables to the board.
> Pull out the board towards the top of the instrument.
Note: The board can be disconnected from the motherboard connector by carefully pressing through the motherboard slots from the bottom.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new board into the instrument and reconnect the cables.
Note: Please observe the labeling on the motherboard.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]

\section*{Replacing the IF Filter A130}
(see chapter 5, spare parts list, item 120, and illustration 1129.9003)
The board is located in the middle of the instrument.

\section*{Opening the Instrument and Removing the Board}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument onto its side and remove all connecting cables to the board.
> Pull out board towards the top of the instrument.
Note: The board can be disconnected from the motherboard connector by carefully pressing from the bottom through the motherboard slots.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new board into the instrument and reconnect the cables.
Note: Please observe the labeling on the motherboard.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ] , then [ CAL RESULTS ]
> Check frequency accuracy and the calibration source level according to chapter 1 and readjust according to chapter 2, if necessary.

\section*{Replacing 8 GHz Converter Unit A160; FSU8}
(see chapter 5, spare parts list, items 130 to 140, and illustration 1129.9003)
The board is located in the middle of the instrument.

\section*{Opening the Instrument and Removing the Board}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument onto its side and remove all cables at the bottom of the board.
> Pull out the board towards the top of the instrument.
Note: The board can be disconnected from the motherboard connector by carefully pressing from the bottom through the motherboard slots.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new board into the instrument and reconnect the cables.
Note: Please observe the labeling on the motherboard.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]
> Execute frequency response correction software FSU-FRQ.EXE.
The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing Diplexer Module A162; FSU8}
(see chapter 5, spare parts list, item 2006 and illustration 1130.2396)
The module is located on the 8 GHz converter unit.

\section*{Removing the Diplexer}
> Remove 8 GHz converter unit (130).
Note: see description "Replacing 8 GHz Converter Unit A160; FSU8"
> Disconnect cable W1 from diplexer (2006).
> Undo 4 screws withe washers (2008) from the bottom of the PCB. .
> Remove diplexer (2006) perpendicularly to the PCB. Note: The diplexer is still fitted to the PCB with contact pins.

\section*{Installing the Diplexer}
> Plug in new diplexer (2006) perpendicularly to the PCB. NoteNote: The diplexer is fitted to the PCB with contact pins.
> Screw back 4 screws with washers (2008) to the bottom of the PCB.
> Fit cable W1 to diplexer (2006).

\section*{Completing the Instrument and Frequency Response Correction}
> Put 8 GHz converter unit (130) back into the instrument. Note: see description "Replacing 8 GHz Converter Unit A160; FSU8.
> Execute frequency response correction software FSU-FRQ.EXE. The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing 8 GHz YIG Unit A161; FSU8}
(see chapter 5, spare parts list, item 2002 and illustration 1130.2396)
The module is located on the 8 GHz converter unit.

Note: Only the YIG units (with YIG filter, cable, sheet metal part) are replaced. The interface is thus always the same when using other YIG filters.

\section*{Removing the \(\mathbf{8}\) GHz YIG Unit}
> Remove 8 GHz converter unit (130).
Note: see description "Replacing 8 GHz Converter Unit A160; FSU8"
> Remove the two module covers by undoing the screws from the bottom of the module.
> Disconnect cable W1 from the diplexer (2006) and cable W2 from the 8 GHz converter circuit (2000).
> Depending on the YIG unit used, disconnect cable from YIG filter to X4.
> Undo 2 countersunk screws (2004).
> Remove the complete YIG unit (2002 or 2003). Note: YIG Unit 1130.2744 .02 (2002) is connected to the PCB via contacts. Remove the YIG unit towards the top perpendicularly to the PCB.

\section*{Installing the \(\mathbf{8} \mathbf{~ G H z ~ Y I G ~ U n i t ~}\)}
> Put the new YIG unit (2002 or 2003) onto the PCB. Note: YIG Unit 1130.2744.02 (2002) is connected to the PCB via contacts. Plug YIG unit to connector contacts from the top perpendicularly to the PCB.
> Fasten YIG unit with 2 countersunk screws (2004).
> Screw on cable W1 to diplexer (2006) and connect cable W2 to 8 GHz converter circuit (2000).
> Depending on the YIG unit used, connect cable from YIG filter at X4.
> Fit the module cover onto the top of the converter unit (positioning by means of adjusting pins). Turn 8 GHz converter unit upside down, fit module cover to the bottom side and refit all screws.

\section*{Completing the Instrument and Frequency Response Correction}
> Put 8 GHz converter unit (130) back into the instrument. Note: see description "Replacing 8 GHz Converter Unit A160; FSU8".
> Execute frequency response correction software FSU-FRQ.EXE
The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing 26.5 GHz MW Converter Unit A160; FSU26}
(see chapter 5, spare parts list, item 140 and illustration 1129.9003, sheet 2)
The module is located in the middle of the instrument.

\section*{Opening the Instrument and Removing the Module}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the enclosure (410) towards the back.
> Unscrew the 10 countersunk screws (260) at the top of the instrument and the 3 screws with washers (250) at the fan side, lift the cover (240) of the instrument to left side and take off.
> Place the instrument onto its side and remove all RF cables from the module at the bottom of the instrument.
> Pull out the module towards the top of the instrument.
Note: The module can be disconnected from the motherboard connector by carefully pushing it upwards from the bottom through the motherboard slots.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new module into the instrument and reconnect all RF cables.
Note: Please observe the labeling on the motherboard.
> Put the top instrument cover (240) back into place and fasten using 10 countersunk screws (260) and 3 screws with washers (250).
> Mount the enclosure (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check if the protocol file is correct:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check if the result is correct:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Execute frequency response correction software FSU-FRQ.EXE.
The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing Diplexer A161; FSU26}
(see chapter 5, spare parts list, item 2105 and illustration 1130.3240
The module is located on the 26.5 GHz MW converter unit.

\section*{Removing the Diplexer}
> Remove 26.5 GHz converter unit (140).
Note: see description "Replacing 26.5 GHz MW Converter Unit A160; FSU26"
> Disconnect all cables from diplexer (2105).
> Undo 4 screws with washers (2110) from the bottom of the PCB.
> Remove diplexer (2006) perpendicularly to the PCB. Note: The diplexer is still fitted to the PCB with contact pins.

\section*{Installing the Diplexer}
> Plug in new diplexer (2105) perpendicularly to the PCB. Note: The diplexer is fitted to the PCB with contact pins.
> Screw back 4 screws with washers (2110) to the bottom of the PCB.
> Screw back all cables to the diplexer (2110).

\section*{Completing the Instrument and Frequency Response Correction}
> Put 26.5 GHz MW converter (130) back into the instrument. Note: see description "Replacing 26.5 GHz MW Converter A160; FSU26"
> Execute frequency response correction software FSU-FRQ.EXE. The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing 26.5 GHz YIG Unit A162; FSU26}
(see chapter 5, spare parts list, item 2115 and illustration 1130.3240)
The module is located on the 26.5 GHz MW converter unit.

Note: Only the YIG units (with YIG filter, cable, sheet metal part) are replaced. The interface is thus always the same when using other YIG filters.

\section*{Removing the 26.5 GHz YIG Unit}
> Remove 26.5 GHz MW converter unit.
Note: see description "Replacing 26.5 GHz MW Converter Unit A160; FSU26"
> Disconnect cable W1 from the diplexer (2105) and cable W2 from Extender26 (2125).
> Disconnect cable from YIG filter at X4.
> Undo 3 cover screws holding the YIG unit (2115) from the bottom of the module.
> Undo 2 countersunk screws (2120).
> Remove the complete YIG unit (2115).

\section*{Installing the 26.5 GHz YIG Unit}
> Put the new YIG unit (2115) onto the PCB.
> Fasten YIG unit with 2 countersunk screws (2120).
> Screw back 3 cover screws holding the YIG unit (2115) to the bottom of the module.
> Screw back cable W1 to diplexer (2105) and cable W2 to Extender26 (2125).
> Connect cable from YIG filter to X4.

\section*{Completing the Instrument and Frequency Response Correction}
> Put 26.5 GHz converter unit (140) back into the instrument. Note: see description "Replacing 26.5 GHz MW Converter Unit A160; FSU26".
> Execute frequency response correction software FSU-FRQ.EXE. The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing the Extender 26 A163; FSU26}
(see chapter 5, spare parts list, item 2125 and illustration 1130.3240)
The module is located on the 26.5 GHz MW converter unit.

\section*{Removing the Extender 26}
> Remove 26.5 GHz MW converter unit (140). Note: see description "Replacing 26.5 GHz MW Converter Unit A160; FSU26".
> Disconnect all cables from Extender26 (2125).
> Undo all cover screws from the bottom side of the module and remove cover (2165). Note: The cover on the top (2160) thus comes off.
> Undo 7 screws with washers (2130) from the Extender 26 (2125) at the bottom side of the module. Caution: The Extender 26 (2125) may drop out.
> Remove the Extender 26 (2125) perpendicularly to the PCB.
Note: The Extender 26 is still fitted to the \(P C B\) with contact pins.

\section*{Installing the 26.5 GHz YIG Unit}
> Plug in the new Extender 26 (2125) perpendicularly to the PCB. Note: The Extender 26 is connected to the PCB by means of connector contacts.
> Refit 7 screws with washers (2130) to the Extender 26 (2125) at the bottom of the module.
> Fit the module cover (2160) onto the top of the 26.5 GHZ MW converter unit (positioning by means of adjusting pins). Turn 26.5 GHz MW converter unit upside down, fit module cover (2165) to the bottom side and refit all screws.
> Reconnect all cables to the Extender 26 (2125).

\section*{Completing the Instrument and Frequency Response Correction}
> Put 26.5 GHz MW converter (130) back into the instrument. Note: see description "Replacing 26.5 GHz MW Converter A160; FSU26"
> Execute frequency response correction software FSU-FRQ.EXE. The software is on the Gloris server.
- Test setup according to menu item "Schematic" (connect external reference).
- Check IEC/IEEE addresses and configuration of instruments.
- Press Autoselect button and perform measurement with Run.
- The frequency correction of the YIG filter is performed under item YIG.
- After calibration, the frequency response is corrected over the entire frequency range.

\section*{Replacing the OCXO A200 (Option FSU-B4)}
(see chapter 5, spare parts list, item 1100, and illustrations 1129.9003 and 1144.9017)
The board is fitted in the front part of the instrument.

\section*{Opening the Instrument and Removing the Board}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Place the instrument onto its side and remove all connecting cables to board.
> Pull out the board towards the top of the instrument.
Note: The board can be disconnected from the motherboard connector by carefully pressing from the bottom through the motherboard slots.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new board into the instrument and reconnect the cables.
Note: Please observe the labeling on the motherboard.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check results:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start a total calibration and check the result:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]
> Check frequency accuracy according to chapter 1 and readjust according to chapter 2, if necessary.

\section*{Replacing the LAN Interface A220 (Option FSU-B16)}
(see chapter 5, spare parts list, item 1240, and illustrations 1129.9003 and 1144.9500)
The module is located in the front part of the instrument.

\section*{Opening the Instrument and Removing the Module}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the enclosure (410) towards the back.
> Unscrew the 10 countersunk screws (260) at the top of the instrument and the 3 screws with washers (250) at the fan side, lift the cover (240) to left side and take off.
> Undo 2 countersunk screws from the left side panel (1300) and take the LAN interface module (1240) and LAN cables (1250) off towards the top of the instrument.
> Disconnect the LAN cable (1250) from the interface (1240).
> Remove the holding angle (1280) by undoing the screw (1285) from the interface board (1240).
> Remove the LAN cable from the LAN interface by undoing the screw (1320) and clamp (1310).

\section*{Installing the New Module and Completing the Instrument}
> Fit the LAN cable to the new LAN interface (1240) by fastening the clamp (1310) with the screw (1320), the shim (1330), the spring washer (1340) and the nut (1350).
> Fit the holding angle (1280) to the interface board (1240) using the screw (1285).
> Reconnect the LAN cable (1250) to the interface (1240).
> Insert LAN interface (1240) together with LAN cable (1250) into slot X250. Note: Securely push the LAN interface into the slot.
> Fix module by means of 2 coutersunk screws to left side panel (1300).
> Place top cover on instrument (240) and fix again using 10 countersunk screws (260) and 3 screws with washers (250).
> Push enclosure (410) back in place and fix rear-panel feet (450) by means of screws.
> Connect power cable, switch on power switch and press ON key.

\section*{Functional Check}

Caution: Do not install or change any network driver.
Network drivers must be adapted to the customer's local network on site.
The installation of network drivers is described in the operating manual.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : HARDWARE INFO ]
> Search for a line containing LAN interface in the table.
If the instrument has recognized the new module, 000000/000 is displayed in the Serial \# column.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{HARDWARE INFO} \\
\hline COMPONENT & SERIAL \# & ORDER \# & MODEL & HWC & REU & SUB REU \\
\hline DETECTOR & \(777446 / 003\) & 1130.2196 & 04 & 10 & 02 & 02 \\
\hline MW CONU UNIT & 760340/008 & 1130.2396 & 02 & 00 & 01 & 00 \\
\hline CPU-Board & 000929/015 & 1091.2789 & 00 & 00 & 07 & 02 \\
\hline MOTHEREDARD & 769156/070 & 1130.1960 & 02 & 00 & 03 & 03 \\
\hline BG CONU GS & 756777/013 & 1130.2409 & 02 & 00 & 02 & 00 \\
\hline DIPLEXER & 752159/049 & 1132.6501 & 02 & 00 & 02 & 00 \\
\hline YIG-FILTER & 759650/015 & 1130.2744 & 03 & 00 & 01 & 00 \\
\hline FSU & 835526/014 & 1129.9003 & 08 & 00 & 00 & 00 \\
\hline LAN Interface & 000000/000 & 1144.9498 & 02 & 00 & 00 & 00 \\
\hline SYNTHESIZER & \(773484 / 032\) & 1130.2096 & 02 & 00 & 04 & 11 \\
\hline RF-CONUERTER & 756775/004 & 1130.1990 & 02 & 00 & 06 & 11 \\
\hline IF-FILTER & 755058/020 & 1130.2296 & 02 & 00 & 03 & 10 \\
\hline RF_ATTEN_8 & 781841/007 & 1137.0599 & 02 & 00 & 03 & 02 \\
\hline
\end{tabular}
> Function test terminated.

\section*{Replacing Combo Drive A381 (Option FSU-B18)}
(see chapter 5, spare parts list, item 1500 and illustrations 1129.9003 and 1145.0259)
The module is located on the top right of the front panel.

\section*{Opening the Instrument and Removing the Module}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the enclosure (410) towards the back.
> Unscrew the 10 countersunk screws (260) at the top of the instrument and the 3 screws with washers (250) at the fan side, lift the cover (240) of the instrument to left side and take off.
> Disconnect floppy power (691) and floppy data (1550) cables from combo drive (1500).
> Disconnect 44-contact flat cable from front module processor (570 or 571), remove cable tie and disconnect cable from combo drive (1500).
> Undo 3 screws with washers (700) and carefully take combo drive (1500) out of the instrument towards the top.
> Remove combo drive (1500) from holder (1505) by undoing 3 screws with washers (1506).

\section*{Installing the New Module and Completing the Instrument}
> Fit new combo drive (1500) to holder (1505) using 3 screws with washers (1506).
> Carefully insert combo drive (1500) with flat cable into the instrument and fix it to frame using 3 screws with washers (700).
> Route 44-contact flat cable from combo drive (1500) to front module processor (570 or 571) via cable ties and connect it. Lock cable ties.
> Refit floppy power (691) and floppy data (1550) cables to combo drive (1500).
\(>\) Place top cover on instrument (240) and fix it back with 10 countersunk screws (260) and 3 screws with washers (250).
> Push enclosure (410) back in place and fix 4 rear-panel feet (450) by means of screws.
> Connect power cable, switch on power switch and press ON key.
> After starting the instrument check if the protocol file is correct:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check if the result is correct:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start system error correction and check if the result is correct:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]

\section*{Replacing the Flash Memory Cards A61, A62 (Option FSU-B20)}
(see chapter 5, spare parts list, item 1700 and illustrations 1129.9003 and 1145.0259)
The flash cards are located in the instrument between the processor and the modules. The spare parts are supplied with pre-installed software.

Note: \(\quad\) The flash memory cards can only be replaced in pairs. The spare part no. 1155.1641 includes 2 flash cards with pre-installed software.

\section*{Opening the Instrument and Replacing the Flash Memory Cards}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the enclosure (410) towards the back.
> Unscrew the 10 countersunk screws (260) at the top of the instrument and the 3 screws with washers (250) at the fan side, lift the cover (240) of the instrument to left side and take off.
> Disconnect flat cable (720) from flash board (1700).
> Undo 2 countersunk screws (740) from flash board holder (730).
> Remove flash board (1700) with holder (730).
> Open clamps (1730) and remove flash memory cards (1710).

\section*{Installing the New Flash Memory Cards and Putting into Operation}
> Plug in new flash memory cards (1710) as indicated by the labeling and lock clamp (1730).
> Plug flash board (1700) and holder (730) into instrument and fix it with 2 countersunk screws (740).
> Refit flat cable (720) to flash board (1700).
> Place top cover on instrument (240) and fix it back with 10 countersunk screws (260) and 3 screws with washers (250).
> Push enclosure (410) back in place and fix 4 rear-panel feet (450) by means of screws.
> Connect power cable and switch on power switch. The instrument is in the standby mode.
> A cold start is required after replacing the flash memory cards. Switch on with the ON key and press the decimal point key at the same time until the computer outputs a beep.
> After starting the instrument check if the protocol file is correct:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check if the result is correct:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start system error correction and check if the result is correct:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]

\section*{Replacing the Electronic Attenuator A50 (Option FSU-B25)}
(see chapter 5, spare parts list, item 1400 and illustrations 1129.9003 and 1144.9300)
The module is located below the fan.

\section*{Opening the Instrument and Removing the Module}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the enclosure (410) towards the back.
> Place instrument on its side and remove RF cables on both sides of the electronic attenuator (1400).
> Undo 4 screws with washers (1460) from the trough.
> Carefully remove electronic attenuator (1400).
> Connect flat cable (1410) to electronic attenuator (1400).

\section*{Installing the Module and Completing the Instrument}
> Refit flat cable (1410) to new electronic attenuator (1400).
> Carefully reassemble new electronic attenuator (1400) and screw it to trough using 4 screws with washers (1460).
> Refit RF cables to both sides of electronic attenuator (1400).
> Push enclosure (410) back in place and fix 4 rear-panel feet (450) by means of screws.
> Connect power cable, switch on power switch and press ON key.
> After starting the instrument check if the protocol file is correct:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]
> Start selftest and check if the result is correct:
- [ SETUP : SERVICE : SELFTEST ], then [SELFTEST RESULT]
> Start system error correction and check if the result is correct:
- [ CAL : CAL TOTAL ], then [ CAL RESULTS ]
> Check frequency accuracy according to chapter 1 and adjust according to chapter 2, if required.

\section*{Replacing the External Generator Control A210 (Option FSP-B10)}
(see chapter 5, spare parts list, item 1600, and illustrations 1129.9003 and 1129.7298)
The board is fitted in the front part of the instrument.

\section*{Opening the Instrument and Removing the Board}
> Switch off the instrument, pull the mains plug, unscrew the 4 rear-panel feet (450) and take off the tube (410) towards the back.
> Unscrew the two countersunk screws (260) at the top of the instrument and the two screws with washers (250) at the fan side, lift the cover at the top (240) of the instrument to the left side and take off.
> Pull out the board towards the top of the instrument.

\section*{Installing the New Module and Completing the Instrument}
> Plug the new board into the instrument.
> Replace the instrument cover (240) at the top and fasten using two countersunk screws (260) and 2 screws with washers (250).
> Mount the tube (410) and the 4 rear-panel feet (450).
> Connect the instrument to the mains, switch on the power switch and press the ON key.
> After starting the instrument check for system messages:
- [ SETUP : SYSTEM INFO : SYSTEM MESSAGES ]

\section*{Troubleshooting}

Malfunctions may have simple causes but also may be caused by faulty components.
These troubleshooting instructions allow for locating the error causes down to board level and make the instrument ready for use again by means of board replacement. For troubleshooting and diagnosis, a selftest is available which polls diagnostic voltages of the modules and displays limit value violations.

We recommend to ship the instrument to our experts in the service centers (see address list) for module replacement and further error elimination.

\section*{Warning!}

Do not plug or unplug boards prior to disconnecting them from the ac supply! Be careful not to cause short-circuits when measuring voltages!

\section*{The following utilities are provided in the FSU for diagnosis purposes:}
- Permanent monitoring of levels and frequencies in the instrument
- Selftest
- System error correction

Note: When problems occur, first check whether any connections (cables, plug-in connections of boards etc.) are damaged or wrongly connected.

Measuring Equipment and Accessories
\begin{tabular}{|l|l|l|l|l|l|}
\hline Item & Type of equipment & Specifications recommended & \begin{tabular}{l} 
Equipment \\
recommended
\end{tabular} & \begin{tabular}{l} 
R\&S- \\
Order No.
\end{tabular} & Use \\
\hline 1 & DC meter & & URE & 0350.5315 .02 & Troubleshooting \\
\hline 2 & Spectrum analyzer & Frequency range 0 to 7 GHz & FSEB 20 & 1066.3010 .20 & Troubleshooting \\
\hline 3 & Adapting cable & \begin{tabular}{l}
1 m long \\
SMP-to SMA-connection
\end{tabular} & - & 1129.8259 .00 & Troubleshooting \\
\hline 4 & Adapting cable & \begin{tabular}{l} 
0.5m long \\
SMP-to-SMP connection
\end{tabular} & - & 1129.8265 .00 & Troubleshooting \\
\hline 5 & Adapter board & \begin{tabular}{l} 
Extension 150 mm high \\
48-contact, 2mm spacing
\end{tabular} & - & 1100.3542 .02 & Troubleshooting \\
\hline
\end{tabular}

\section*{Troubleshooting Switch-on Problems}
- Error: FSU cannot be switched on.
Action
\begin{tabular}{c} 
Check power-on switch on the rear \\
\(\Downarrow\)
\end{tabular}

Check yellow LED (Stand-by).
\(\Downarrow\)

Switch on instrument. Check green LED
\(\Downarrow\)

Possible error causes and further steps
Power switch OFF: Switch on power supply.

LED remains dark:
> Measure voltage at X20.D24 (power supply unit) Rated value: \(+12 \mathrm{~V} \pm 1 \mathrm{~V}\)
Voltage o.k.: Keyboard or controller faulty.
No voltage: Remove IF filter or OCXO modules.
> Measure voltage at X20.D24 (power supply unit):
Rated value: \(+12 \mathrm{~V} \pm 1 \mathrm{~V}\)
Correct voltage: Removed module faulty
No voltage: Power supply faulty or shortcircuit at 12 V standby.

LED remains dark:
Measure PWR-ON signal on the power supply X20.B1:
\(<1 \mathrm{~V}\) for ON
Voltage > 1V: Keyboard membrane or controller faulty.

Measure voltages on the motherboard, see "Shortcircuit of one or more operating voltages".
- Error: Short-circuit of one or more operating voltages

\section*{Action}

Check on the bottom of the motherboard which of the voltages is short-circuited:

Computer, hard disk, EEPROMs : X20.A7 to A10: rated value: +5 V 2 Detector board :
X20.A5 and X20.A6: rated value +3 V3
Analog boards:
X130.A10: \(\quad\) rated value +12 V
X130.A9: \(\quad\) rated value +8 V
X130.A8: \(\quad\) rated value +6 V
X130.A12: rated value -12 V

Possible error causes and further steps
One voltage is missing or very small:
Remove the respective boards from the instrument one by one and repeat the measurement.

If the voltage is supplied, then, the error is probably located on the module removed.

Note: The power supply switches off all voltages after a short time in case of a short-circuit. Restart by pressing the Standby/On key.
- Error: Fan does not work.

\section*{Action}

Check voltage at connector:
X35 pins \(1+3: \quad\) Rated value 7V

Possible error causes and further steps
If there is no voltage, the fan is defective:
Replace fan If the voltage is too small, the fan is blocked or the power consumption is too high.

\section*{Troubleshooting Problems with Booting}
- Error: FSU does not start the measurement application.

Following switch-on, the FSU first boots the computer BIOS. After successful initialization of the computer the Windows NT operating system starts up. Subsequently, the test application is loaded as start-up program. Simultaneously, selftests are performed at various locations and error messages, if any, are output. The messages are disabled with normal operation, but can be enabled for troubleshooting purposes. It is advisable for troubleshooting to connect a keyboard to the keyboard socket.

\section*{Normal action}
> Start FSU
Subsequent to switching on the FSU, the following BIOS message is displayed:
```

Award Modular BIOS v4.51PG, An Energy Star Ally
Copyright (C) 1984-97, Award Software, Inc.

```
R\&S FSU FMR 5 BIOS V1.0-22-1
| Rohde\&Schwarz GmbH \& Co KG
| Analyzer BIOS V1.0

06/24/99-i430TX-67X-2A59IED4C-00
After the first beep, the computer starts the hardware test and the message:

> , ESC to skip Memory test...
is shortly displayed at the lower edge of the screen.
The test results are usually not displayed. If errors occur during the boot procedure, these messages may indicate defects.
> The messages can be made visible by pressing the "DISP" key following the beep. The keystroke is acknowledged by a second beep.

Then, all messages are displayed.
```

Award Modular BIOS v4.51PG, An Energy Star Ally
Copyright (C) 1984-97, Award Software, Inc.
R\&S FSU FMR 5 BIOS V1.0-22-1
65536K OK (=result of memory test)
06/24/99-i430TX-67X-2A59IED4C-00

```

The memory test issues the memory capacity of the front module controller. The basic version of the FSU provides 64 Mbytes. Subsequently, BIOS starts the hardware check and displays all PC boards found.

\section*{Error and error cause}

If no result of the memory test is indicated, the memory is defective.

\section*{Normal action}
> This procedure may be interrupted using the "PAUSE" key on the connected external keyboard, any other key continues the program execution.

Award Modular BIOS v4.51PG, An Energy Star Ally
Copyright (C) 1984-97, Award Software, Inc.
R\&S FSU FMR 5 BIOS V1.0-22-1
65536K OK
Award Plug and Play BIOS Extension v1.0A
Copyright (C) 1997, Award Software, Inc.
Detecting HDD Primary Master...IBM-DKLA-24320
(depends on the hard disk installed )
06/24/99-i430TX-67X-2A59IED4C-00
Then, the SETUP is displayed.
> This procedure may also be interrupted using the "PAUSE" key.

The contents partly depends on the hardware provided:

\section*{Error and error cause}

If this hard disk entry is missing, the hard disk may be faulty


\section*{Normal action}

The PCl hardware test is displayed in the lower half of the screen. All modules found during the test are displayed with their names and PCl device IDs. The Device Class column lists the types of PCI device. The detector board of the FSU is indicated as "Unknown PCI Device".

After this test, the BIOS has been loaded and the operating system is started.

After successful installation of Windows NT, the following selection menu is displayed:

OS Loader V4.00
Please select the operating system to start:

\section*{Analyzer Firmware}

Analyzer Firmware Backup
Use \(\uparrow\) and \(\downarrow\) to move the highlight to your choice.
Press Enter to choose.
Seconds until highlighted choice will be started automatically: 0
NT Detect V4.0 Checking Hardware ...
Approx. 5 seconds later, the following message is displayed:
OS Loader V4.01....
Press spacebar now to invoke Hardware Profile/Last Known Good menu
followed by (blue background):
Microsoft (R) Windows NT (TM) Version 4.0 (Build 1381 : Service pack 5) 1 System Processor [64 MB Memory]

The version numbers depend on the used version.

\section*{Error and error cause}

If the line "Unknown PCI Device" is missing, the detector board has not been identified and the measuring application cannot be started. If the remaining PCl devices have all been identified, the detector board will probably contain the error, which is why the board must then be replaced.

The message "No System Disk or Disk error ..." at this point indicates that the contents of the hard disk are not correct. Replace the hard disk.

If the instrument has started correctly so far, there is most probably no fault in the computer; the boot problem presumably results from a defective system file on the hard disk.

\section*{Normal action}


Subsequent to starting the operation system, the application for the FSU is loaded in a start-up program. The program start is initiated automatically and generates a window, which displays information on the start-up procedure.

\section*{Error and error cause}

If the operating system on the hard disk has been destroyed and cannot be loaded correctly, Windows NT reacts by a "Bluescreen". This bluescreen contains all essential information on the internal states of the computer which are displayed as follows (by way of example):

Windows NT and the instrument firmware must then be updated from the back-up partition (see chapter 4, Section "Initial Setup/ Update of the Instrument Firmware").


While booting, the detector board is identified again.

\section*{Error and error cause}

If a "Bluescreen" is displayed with loading, a cold start may be necessary. Proceed as follows in such a case:
> Cold start (keep point key pressed after first beep until display of the selection menu)
> Firmware update from the backup partition, if cold start is not successful.(see chapter 4)

If the detector board is not identified, the following message is issued:


\section*{Normal action}

When the program has been loaded, the measurement hardware is initialized first. A timer which is controlled by a 32 MHz clock signal is set on the detector board. This test reveals proper functioning of the detector board and the clock oscillator in the FSU (RF converter).

After passing the function tests, the analog boards are initialized and the correction data EEPROMs are loaded.

\section*{Error and error cause}

If there is an error on the detector board or the clock is missing, the following message is displayed:

\section*{SYSTMM MISSSACE}

DETECTOR:Access failed, check HW component !

The reference is generated on the synthesizer. This 128 MHz reference is necessary for proper functioning of the detector board.

In this case, first check the clock generation in the instrument.

The following measurements are appropriate to check the reference supply:
\begin{tabular}{|l|l|}
\hline Measurement: & Result: \\
\hline \begin{tabular}{l} 
Synthesizer A100, X114: \\
rated value 128 MHz, 0 dBm \\
\(\Downarrow\)
\end{tabular} & \begin{tabular}{l} 
No signal: \\
replace \\
synthesizer.
\end{tabular} \\
\hline \begin{tabular}{l} 
Synthesizer A100, X114: \\
rated value 32 MHz, 0 dBm
\end{tabular} & \begin{tabular}{l} 
No signal:replace \\
synthesizer.
\end{tabular} \\
\hline
\end{tabular}

If no error occurs with the clock generation, booting can be continued by acknowledging the error message using "OK"

If no error message or any other information on the error source is issued during booting, the error can only be determined by replacing the detector board or the front-module controller.

\section*{Troubleshooting - Loading Module EEPROMs}

\section*{- Error: Data of modules cannot be read.}

\section*{Normal action}

On booting the instrument all calibration data required must be written into the RAM of the computer. The calibration data of a module are either read from the EEPROM (in case of a cold start from EEPROM only) or from the associated binary file.
For each module identified by the software a check is made first to determine whether the EEPROM can be read.

If reading at the desired address is not possible, the software assumes that the module is not available.

The calibration data are then read from the file pertaining to the module (eg iffilt.bin).

If reading at the address of an optional module is not possible, this module is marked as not available in the module array for storage of the module information.
If the file pertaining to the non-available module does exist, it is assumed that upon the last successful booting the module was available but has been removed meanwhile. The file with the calibration data of the module is erased. Moreover the data collected during the last calibration are invalid and only saved as a backup copy on the hard disk

Error and error cause

For modules that must always be available (eg IF filter) an error message will be output:

Error reading EEPROM of IF Filter
If error-free reading of the binary file is not possible either, an error message is output again.

Error reading file of IF Filter

If reading at the address of a module is possible but the contents of the data block faulty (eg check sum of header block incorrect), the calibration data of the respective module are read from the associated file. The firmware assumes that the module is available. The information read from the file is entered into the array for storage of the module information.

Error reading EEPROM of IF Filter

\section*{Normal action}

Upon successful reading of the module header from the EEPROM the contents of the module header is compared with the module header of the associated binary file. If the module header can be read from the file and complies with the header read from the EEPROM the assumption is made that the contents of the module EEPROM has already been mapped in the binary file. The calibration data can thus be written from the file to the RAM.

After loading the calibration data from the EEPROMs, the calibration data are loaded from the calibration data files (eg DDC settings for various filters). First the relevant calibration data file is written to the calibration data memory.

After loading the calibration data from the EEPROMs and files, the data collected during the last calibration are loaded from the 'rdf_cal.bin' file into the calibration data memory. This process takes only place if valid calibration data (and the 'rdf_cal.bin' file) are available.

\section*{Error and error cause}

If, however, the associated file cannot be found or if the module header of the EEPROM differs from that of the file, the total EEPROM contents must be written to the RAM and then saved in the binary file.

Error finding file of IF Filter

If an error occurs upon loading the file into the memory, an error message is output:

Error reading file of DDC Filter

If there are no valid calibration data, the status message "UNCAL " is output informing the user that the instrument is uncalibrated.

\section*{Troubleshooting via Selftest}

The selftest is provided for identification of instrument errors and tolerance violations which cannot be corrected with self-calibration of the instrument.
All signal paths are connected and the signal is traced via test points. The selftest checks all possible hardware settings which are used for the self-calibration with regard to sufficient setting range including reserves.

\section*{Service Level 1 - Test Following the Entry of a Password}

When entering the password, the test result is recorded in detail and in case of a fatal error (such as a failure of the operating voltage), the selftest is not aborted.

The selftest can be called in the SETUP - SERVICE menu:


The SELFTEST RESULTS softkey calls a complete list of all test results. If an error occurs, a brief description of the failed test, the module concerned, the valid range and the measurement value are displayed.
\begin{tabular}{|lcrlll|}
\hline Total Selftest Status: \(* * *\) FAILED*** & & \\
Date (dd/mm/yyyy) : \(10 / 06 / 1999\) & Time: \(16: 34: 47\) & \\
Runtime: 05:59 \\
& & & & & \\
Supply voltages detector & & & \\
test description & min & max & result & state \\
+6 V & 5.88 & 6.42 & 6.06 & PASSED \\
+8 V & 7.84 & 8.96 & 8.56 & PASSED \\
+12 V & 11.76 & 12.83 & 12.42 & PASSED \\
-12 V & -11.33 & -13.28 & -11.85 & PASSED \\
+28 V & 26.62 & 29.39 & 28.34 & PASSED \\
& & & & & \\
\hline
\end{tabular}

\section*{Running the Selftest and Error Messages}

\section*{Overview}

The calibration source on the IF-filter module is used as signal source for testing the signal path.
1. Measurement of the operating voltages
of the power supply
regulated operating voltages on the detector and IF-filter modules
2. Temperature measurement on the IF-filter board
3. Testing the fourfold D/A converter on the detector
4. Synthesizer test
5. Lock test YIG oscillator and LO level test on RF converter
6. Testing of the signal paths on RF converter, IF filter and detector
7. Test of optional modules

All measurements on the analog boards are independent of the gate arrays on the detector board, since individual A/D converters are provided for them on the analog boards. The interface section in the FPGA of the detector board must function properly to read these A/D converters. This is always tested when the instrument is switched on.

The signal path via the gate arrays on the detector board is tested using a known, analog signal at the input of the A/D converter on the detector board. The analog test signal is provided by the preceding analog tests.

Since the operating voltages are measured first, it is ensured that the selftest can be performed correctly. If an operating voltage has failed that is not required by the selftest this is correctly signaled in the error list. If, however, all operating voltages are indicated to be faulty, it may well be assumed that the operating voltage for the selftest has failed or the selftest A/D-converter itself is defective.

\section*{Testing the Operating Voltages}

When an operating voltage fails, the selftest is aborted to avoid subsequent errors.
The test is not aborted after entry of the password. All subsequent errors are then listed in the result record. Errors that have occurred irrespective of the voltage failure can then be detected, still.

The error message indicates the error source (power supply, IF filter, detector board) and the voltage which has failed.

\section*{Normal action}

\section*{Power Supply}

The voltages of the power supply and the -6 V regulator (dc-dc converter from -12 V to -6 V on the motherboard) are measured at the board connector by means of the selftest A/D-converter on the detector board.
\begin{tabular}{|l|l|}
\hline Channel & Nominal voltage \\
\hline 1 & +6 V \\
\hline 2 & +8 V \\
\hline 3 & +12 V \\
\hline 4 & -12 V \\
\hline 5 & +28 V \\
\hline 7 & -6 V \\
\hline
\end{tabular}

\section*{Regulated Voltages on the Boards Detector Board}
\begin{tabular}{|l|l|}
\hline Channel & Nominal voltage \\
\hline 6 & -5 V \\
\hline
\end{tabular}

\section*{Error and error cause}

\section*{FATAL ERROR!}

Power supply: DC FAIL +6V.
Selftest aborted.
> If error messages occur, the voltages on the motherboard should be checked. The tolerances given in the column "Tolerance range power supply / voltage regulator" apply in this case. If the voltages are within the tolerance limits, the error must be located in the selftest:
> Replace the detector board.

\section*{FATAL ERROR!}

Detector: DC FAIL -5V.
Selftest aborted.
> If no faults have been found in the preceding tests, the detector board has to be replaced.

\section*{Temperature Measurement on IF Filter}

\section*{Normal action}

The temperature is measured first.

Subsequently the operating voltages are measured.
\begin{tabular}{|l|l|l|}
\hline Channel & \begin{tabular}{l} 
Nominal \\
voltage
\end{tabular} & \begin{tabular}{l} 
Designation, \\
name which occurs in the \\
error message
\end{tabular} \\
\hline 74 & -5 V & UREF-5 \\
\hline 77 & \(+2,5 \mathrm{~V}\) & UREF+2.5 \\
\hline 76 & \(+3,3 \mathrm{~V}\) & +3.3 V \\
\hline 73 & +5 V & +5 V \\
\hline 72 & \(+10,6 \mathrm{~V}\) & +10 V \\
\hline 71 & -5 V & -5 V \\
\hline 70 & \(-10,6 \mathrm{~V}\) & -10 V \\
\hline 75 & +5 V & +5 VR \\
\hline
\end{tabular}

\section*{Error and error cause}

\section*{WARNING!}

IF-FILTER: Operating Temperature \(\mathrm{xx}{ }^{\circ} \mathrm{C}\) out of range

If the temperature does not lie within the permissible range of \(0^{\circ}\) to \(70^{\circ} \mathrm{C}\), the warning will be output.
> Check the temperature data for plausibility. The fan might be defective or the ventilation slots might be covered.
If the temperature data indicated are not reasonable, e.g. \(120^{\circ} \mathrm{C}\) when the instrument is cold, the temperature sensor or the selftest may be faulty.
If, in the following, the first operating voltage (or all operating voltages after entering the password) is measured incorrectly, the selftest will obviously be defective.

The IF filter board must be replaced in any case, if an error message occurs which refers to these operating voltages or the temperature (if not plausible).
The voltage of the temperature sensor is used for temperature compensation of the filters. Thus, a faulty temperature sensor may detune the filters such that subsequent errors are likely to occur.

\section*{Checking the 4 -fold D/A Converter on the Detector Board}


FATAL ERROR!
Detector: Pretune DAC FAIL - check DCON and pretune DAC Selftest aborted.
> Replace the detector board

\section*{Testing the Synthesizer}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{c|}{ Normal Action } \\
\hline \begin{tabular}{l} 
Chan- \\
nel
\end{tabular} & \begin{tabular}{l} 
Voltage \\
nominal
\end{tabular} & \begin{tabular}{l} 
Expression appearing in \\
the error message
\end{tabular} \\
\hline 11 & -5 V & -5 V \\
\hline 01 & +5 V & +5 V \\
\hline 21 & +7 V & +7 V \\
\hline 60 & +12 V & +12 V \\
\hline 41 & +28 V & +28 V \\
\hline
\end{tabular}
\(>\) If there is an error message referring to these operating voltages the synthesizer is to be replaced in any case.

\section*{Temperature measurement:}

\section*{Error and error cause}

The synthesizer accommodates a temperature sensor for the module temperature and one monitoring the heater of the 128 MHz reference oscillator.

WARNING!
Test channel 71
Synthesizer: Temperature out of range
Test channel 51

\section*{WARNING!}

Synthesizer: Temperature 128 MHz reference range
> In the case of an illegal temperature, it is not sure that the 128 MHz oscillator can be tuned to the correct frequency, since the SC cut crystal used is specified for a temperature of \(70^{\circ} \mathrm{C}\).

\section*{Reference signals on the synthesizer}

The control loops on the synthesizer are checked for the locking status and the set control voltage.

\section*{10 MHz OCXO level:}

Level detector channel 00.

FATAL ERROR! 10 MHz OCXO defect !
> Replace the synthesizer in case of error.

128 / 384 MHz Oscillators:
Testing the 128 MHz crystal oscillator and the third LO.

ERROR!
Reference 128 MHz / 3rd LO unlocked!
Reference 128 MHz / 3rd LO out of tuning range !
The instrument may still work properly, but the tuning voltages are almost at the limit or the frequency accuracy is out of tolerance.
> Replace/adjust the synthesizer.

\section*{ERROR!}

Sweep synthesizer unlocked!
Sweep synthesizer out of tuning range!

\section*{Second local oscillator}

Testing the tuning voltage at the 4224 MHz oscillator

\section*{Calibration signal control voltage:}

Checking the detector voltage in the level control of the Cal signal

If the sweep VCO fails, the YIG oscillator does not lock or it locks at a wrong frequency and also signals unlock.
> Replace synthesizer.

FATAL ERROR!
\(2^{\text {nd }}\) LO tuning voltage out of range !
If the second local oscillator fails, it is possible that the YIG oscillator does not lock or it locks at a wrong frequency and also signals unlock.
> Replace synthesizer

\section*{ERROR!}

Calibration signal error

If the control voltage is out of tolerance, the level control loop unlocks and the level becomes inaccurate. In the case of a small level error, the selftest of the signal path is possible. However, the level measuring accuracy will be out of tolerance after instrument calibration.
> Replace synthesizer.

\section*{Testing the RF Converter}

Normal action
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Chan- \\
nel
\end{tabular} & \begin{tabular}{l} 
Voltage \\
nominal
\end{tabular} & \begin{tabular}{l} 
Expression that appears \\
in the error message
\end{tabular} \\
\hline 60 & +5 V & +5 V \\
\hline 61 & 2.5 V & DAC Reference \\
\hline 62 & +7 V & +7 V \\
\hline 63 & +11 V & +11 V \\
\hline 64 & +28 V & +28 V \\
\hline
\end{tabular}

Error and error cause
> The RF converter is to be replaced in any case if there is an error message referring to these operating voltages.

\section*{Temperature measurement:}

The RF Converter accommodates a temperature sensor for the module temperature

WARNING!
RF Converter: Temperature out of range
> Check air supply and fan for proper functioning.

\section*{Test LO level}

The level detectors of the second and third LO are read:
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Chan- \\
nel
\end{tabular} & Oscillator & \begin{tabular}{l} 
Expression appearing in \\
the error message
\end{tabular} \\
\hline 3 & LO 3 & Level 3 \(^{\text {rd }}\) Local \\
\hline 2 & LO 2 & Level 2 \(^{\text {nd }}\) Local \\
\hline
\end{tabular}

In the case of too low voltage also check the level at the module input in the selftest poll! Setting Center, Zero Span
\(>+10 \mathrm{dBm} / 384 \mathrm{MHz}\) at X 101
\(>+7 \mathrm{dBm} / 4224 \mathrm{MHz}\) at X105
If the levels are correct, replace the RF converter. If the levels are not okay (deviation \(>3 \mathrm{~dB}\) ) measure the signals at the synthesizer again and replace the synthesizer, if necessary!

YIG oscillator test:
The YIG oscillator is tuned through the entire frequency band. The pretuning (with upper and lower limit) is also tuned with a small offset from the actual frequency. If the current flowing through the YIG coil and set by the PLL reaches one of these limits, the unlock detector will respond. This is a test both for the pretuning values and for functioning of the PLL.

FATAL ERROR!
YI G Oscillator unlocked!
> Replace the RF converter in the case of error.

\section*{Test input mixer}

The mixer diodes both rectify part of the LO power. The two voltages can be polled via the selftest channels 0 and 1 .

If the two voltages are missing or too low, the LO level is presumably missing, which is why an error message appears:

If the two voltages differ (>20 \%), the mixer is asymmetric, i.e. one of the two diodes is damaged.

FATAL ERROR!
\(1^{\text {st }}\) LO level low or \(1^{\text {st }}\) mixer defective!

\section*{FATAL ERROR!}
\(1^{\text {st }}\) Mixer symmetry out of tolerance !
In both cases:
Replace RF converter

\section*{Testing the Signal Path via the Attenuator}

The internal source for the test signal (CAL signal) has already been tested when testing the reference signals. The first and second mixer feature sufficient LO power, i.e. the conversion from the RF to the second IF should therefore work properly.

\section*{Normal action}

\section*{Signal Path via RF Attenuator}

The measurement is made at the second IF using a logarithmic detector on the RF converter. The 0dBm test signal is measured with the following attenuator settings:
\begin{tabular}{|l|l|l|}
\hline RF-Att & Coupling & Test \\
\hline 0 & DC & Reference measurement \\
\hline 0 & AC & AC/DC switch +-5 dB \\
\hline 5 & DC & \(5-\mathrm{dB}\) attenuator +-5 dB \\
\hline 10 & DC & \(10-\mathrm{dB}\) attenuator +-5 dB \\
\hline 20 & DC & \(20-\mathrm{dB}\) attenuator +-5 dB \\
\hline 40 & DC & \(40-\mathrm{dB}\) attenuator +-10 dB \\
\hline
\end{tabular}

\section*{Error and error cause}
> If there is no measured value within the tolerance range, the error is likely to be located in the subsequent signal path. It is not likely that all attenuator stages and the \(0-\mathrm{dB}\) position are faulty, therefore the following error message appears.

\section*{FATAL ERROR!.}

Input level RF converter out of tolerance !
> Before replacing the RF converter, measure the input level at X108 in any case. For this purpose, the input is connected to the Cal source with 0 dBm and 0 dB attenuator DC coupling. The level should lie at 128 MHz and 0 dBm . Otherwise, check level at X125.
> If the level is okay replace the RF converter.
> If the signal is not applied at the synthesizer either, replace the synthesizer.
> If only individual measurements are out of tolerance, the RF attenuator is defective.
FATAL ERROR!.
RF Attenuator xx dB pad failed!
Caution: Since a faulty RF attenuator causes many subsequent errors to occur with the IF-filter test, proper functioning of the attenuator is a must.

\section*{Signal Paths on the IF Filter Board}
Normal action
Input Level of IF Filter / Calibration Amplifier
(CAL-Amps 1 + 2 )

\section*{Error and error cause}

FATAL ERROR!
IF Board: IF input level / CALAMP
Selftest aborted
Possible error causes:
- Signal path interrupted in the RF converter.
- Erroneous EEPROM data in the RF converter leading to incorrect setting of CAL_Amp1.
- CAL_Amp1 or 2 faulty.

Troubleshooting
> Check the level applied at X132 with 0 dBm mixer level:
Nominal -3 dBm , production tolerance \(\pm 3 \mathrm{~dB}\), max. permissible \(\pm 4.5 \mathrm{~dB}\);
> Replace the RF converter if the deviation exceeds this value.

\section*{Normal action}

\section*{LC-Filter I and XTAL Filter}

The level measurement is performed with wide and narrow bandwidths of the LC filter. Subsequently, an additional measurement is made via the crystal filter. If the LC filter does not work properly, the measurement of the crystal filter is not performed.

\section*{Error and error cause}

If the level lies within the tolerance, a defective CAL_Amp may have caused the error. The setting ranges of the CAL_Amps are tested during the selftest, later.
The selftest is not interrupted after entry of a password.
> Note whether the result file contains any error messages concerning the CAL_Amps. If there is no CAL_Amp error, the CAL_Amps will be set incorrectly. The EEPROM data in the RF converter are obviously incorrect.

\section*{ERROR!}

IF Board: LC Filter- \(1 / 2\) wide XTAL Filter not tested

\section*{ERROR!}

IF Board: LC Filter-1/2 narrow
XTAL Filter not tested

\section*{ERROR!}

IF Board: XTAL Filter
> The IF filter board must be replaced in all cases.
Normal action
StepGain (IF Amplifier)
The 10-dB Step Gain (Step Gain Coarse) and the
0.1 dB Step Gain (Step Gain Fine) are tested. The
input level is attenuated in steps of 10 dB by the
RF attenuator and simultaneously amplified by
means of the StepGain by the same amount. The
level detector C checks to \(\pm 6 \mathrm{~dB}\) (user) or \(\pm 4 \mathrm{~dB}\)
(service level 1).

\section*{FATAL ERROR!}

IF Board: Step Gain Fine
Selftest aborted
> Test with Step Gain Coarse by-passed (0 dB) and Step Gain Fine set to 0 dB

If an error occurs, Step Gain Fine does not work correctly or the signal path is interrupted.
> Replace the IF-filter board.

\section*{ERROR!}

IF Board: Step Gain Coarse
> Testing the amplifier stages.

\section*{ERROR!}

IF Board: Step Gain Fine
> Testing the amplifier stages.
Attention: If the RF attenuator test has already caused an error message, Step Gain cannot be tested and an error message must be ignored!
> If the RF attenuator test passed without any error, Step Gain is defective.
> Replace the IF-filter board.
However, the selftest can be continued, since it does not require the IF gain.

\section*{Signal Paths on the Detector Board}
Normal action
Various settings of the detector board are checked
via the normal display function, i.e. FFT mode, digital
filters and analog filters. Possible error messages:

\section*{Error and error cause}

Various settings of the detector board are checked filters and analog filters. Possible error messages:

ERROR!
Detector Board: FFT
Detector Board: FIR
Detector Board: Video

\section*{Troubleshooting RF Converter 1}

Depending on the kind of error a few measurements should be performed on the RF converter before replacing the module:
- IP3 too high
- Signal level too low
- LO feedthrough too high
- Spurious signals

These errors may be caused by a defective input mixer. Since this mixer is directly connected to the input connector, it may be easily destroyed by the user.

A defective mixer can be recognized from a very high display of \(>-10 \mathrm{dBm}\) at the frequency 0 Hz with 0 dB input attenuation.

\section*{Action}

Measure with diode tester at X101:
rated value: approx. 0.6 V voltage in the forward and reverse directions with a current of 1 mA .

\section*{Error and error cause}

Different values in both directions, high-impedance or very low-impedance: mixer defective :
replace RF converter
- Signal missing or displayed with incorrect frequency

If the signal is missing or the instrument signals "LOUNL", the conditioning of the 1st LO is probably not correct. The function of this oscillator requires both, the EEPROM data and the reference frequency of the second module.

\section*{Action}

Measure function of the 1st LO in zero span. check signal at X107:
rated value: 4628.4 .4 MHz above the current input frequency (between 0 Hz and 3.6 GHz) and the signal level is approx. -5 dBm .

\section*{Error cause/remedy}

The frequency is considerably higher or lower or the signal is not stable
replace RF converter

\section*{Contents - Chapter 4 "Software Update/Installing Options"}
4 Software Update / Installing Options ..... 4.1
Installation of new FSU Software ..... 4.1
Installing the Options ..... 4.2

This page is left blank intentionally.

\section*{4 Software Update / Installing Options}

This chapter contains information on Software-Update and Installing Options to the FSU. Additional manuals obtained together with a software/firmware update or with subsequently acquired options can be filed here.

\section*{Installation of new FSU Software}

The installation of a new firmware version can be performed using the built-in diskette drive. The firmware update kit contains several diskettes.
The installation program is called up in the SETUP menu.
SETUP sidemenu:


The FIRMWARE UPDATE softkey starts the installation program and leads the user through the remaining steps of the update

IE/IEEE-bus command: --
Performing the update:
Insert diskette 1 into the drive.
Call SETUP side menu
[SETUP][NEXT]
Start update
[FIRMWARE UPDATE]

The RESTORE FIRMWARE softkey restores the previous firmware version

IEC/IEEE-bus command:

\section*{Installing the Options}

The following options are available with the FSU:
\begin{tabular}{lll} 
Option OCXO & FSU-B4 & 1144.9000 .02 \\
Option External Generator Control & FSP-B10 & 1129.7246 .02 \\
Option LAN Karte & FSU-B16 & 1144.9498 .02 \\
Option Elektronic Attenuator & FSU-B25 & 1144.9298 .02
\end{tabular}

For retrofitting, please note the mounting instructions enclosed with the options.
These mounting instructions can be filed at this place in the service manual and are thus easily available whenever they are required.

\section*{Caution!}


Disconnect the instrument from the mains before opening the casing. Also note the safety instructions at the beginning of this manual.

The components used in the instrument are sensitive to electrostatic discharges which is why they are to be dealt with according to the ESD regulations.

When installing hardware options note the following:
> Switch off instrument and pull the mains plug.
\(>\) Unscrew the 4 rear-panel feet (450) and push the tube (410) backwards and take off.
> After installing the option replace the tube and fasten the rear panel feet again.

\section*{Caution!}

When replacing the tube take care not to damage or pull off cables.
\(>\) Switch on FSU.
> Install additional software, if supplied, according to the instructions enclosed with the option.
> If an adjustment is required for this option, the appropriate hints are to be found in the installation instructions for the option.

\section*{Contents - Chapter 5 "Documents"}
5 Documents ..... 5.1
Shipping of Instrument and Ordering of Spare Parts ..... 5.1
Shipping of Instrument. ..... 5.1
Shipping of a Module ..... 5.1
Ordering Spare Parts ..... 5.2
Refurbished Modules ..... 5.2
Taking back Defective Replaced Modules ..... 5.2
Spare Part ..... 5.3
Available Power Cables ..... 5.3
Spare Part List ..... 5.5
Mechanical Drawings ..... 5.5
Block Circuit Diagram ..... 5.15
Part List ..... 5.15
Figures
Tables
Table 5-1 List of power cables available ..... 5.3
Table 5-2 List of all FSU part and spare parts ..... 5.7

This page is left blank intentionally.

\section*{5 Documents}

This chapter provides information on the ordering of spare parts and contains the spare part list and the documents for the complete FSU unit.

\section*{Shipping of Instrument and Ordering of Spare Parts}

Please contact your Rohde \& Schwarz support center or our spare parts express service if you need service or repair of your equipment or to order spare parts and modules.

The list of the Rohde \& Schwarz representatives and the address of our spare parts express service are provided at the beginning of this service manual.

We require the following information in order to answer your inquiry fast and correctly and to decide whether the warranty still applies for your instrument:
- Instrument model
- Serial number
- Firmware version
- Detailed error description in case of repair
- Contact partner for checkbacks

\section*{Shipping of Instrument}

When shipping the instrument, be careful to provide for sufficient mechanical and antistatic protection
> Repack the instrument as it was originally packed when transporting or shipping. The two protective caps for the front and rear panels prevent the control elements and connectors from being damaged. The antistatic packing foil avoids any undesired electrostatic charging to occur.
> If you do not use the original packaging, provide for sufficient padding to prevent the instrument from slipping inside the package. Wrap antistatic packing foil around the instrument to protect it from electrostatic charging.

\section*{Shipping of a Module}

When shipping a module, then, also be also careful to provide for sufficient mechanical and antistatical protection
> Ship the module in a sturdy, padded box.
> Wrap the board into antistatic foil.
If the packaging is only antistatic but not conductive, additional conductive packaging is required. The additional packaging is not required if the enclosed packaging is conductive.
Exception: If the module contains a battery, the tightly fitting packaging must always consist of antistatic, non-chargeable material to protect the battery from being discharged.

\section*{Ordering Spare Parts}

To deliver replacement parts promptly and correctly we need the following indications:
- Stock number (see component lists in this chapter)
- Designation
- Component number according to component list
- Number of pieces
- Instrument type the replacement part belongs to
- Contact person for possible questions

The stock numbers necessary for ordering replacement parts and modules as well as power cables can be found further down.

\section*{Refurbished Modules}

Refurbished modules are an economic alternative for original modules. It should be kept in mind that refurbished modules are not new, but repaired and fully tested parts. They may have traces from use but they are electrically and mechanically equivalent to new modules.

To find out which refurbished modules are available, please refer to your Rohde \& Schwarz representative (or to the central service division, Rohde \& Schwarz Munich).

\section*{Taking back Defective Replaced Modules}

Defective modules of the replacement program which can be repaired are taken back within 3 months after delivery of the replaced module. A repurchasing value is credited.
Excluded are parts which can not be repaired, e.g. PCBs that are burnt, broken or damaged by repair attempts, incomplete modules, parts which are heavily damaged mechanically.

The defective parts must be sent back with a returned accompanying document containing the following information:
- Stock number, serial number and designation of the dismounted part,
- Precise description of the error,
- Stock number, serial number and designation of the instrument the part was dismounted from,
- Date of dismounting,
- Name of the technician who exchanged the part.

A returned accompanying document is provided with each replacement module.

\section*{Spare Parts}

The stock numbers necessary for ordering replacement parts and modules can be found in the component lists further down.

\section*{Important Note!}

When replacing a module please note the safety instructions and the repair instructions given in chapter 3 and at the beginning of this service manual

When shipping a module be careful to provide for sufficient mechanical and antistatical protection.

\section*{Available Power Cables}

Table 5-1 List of power cables available
\begin{tabular}{|l|l|l|}
\hline Stock No. & Earthed-contact connector & Preferably used in \\
\hline DS 006.7013 & \begin{tabular}{l} 
BS1363: 1967 ' complying with \\
IEC 83: 1975 standard B2
\end{tabular} & Great Britain \\
\hline DS 006.7020 & \begin{tabular}{l} 
Type 12 complying with SEV-regulation \\
1011.1059, standard sheet S 24 507
\end{tabular} & Switzerland \\
\hline DS 006.7036 & \begin{tabular}{l} 
Type 498/13 complying with \\
US-regulation UL 498, or with IEC 83
\end{tabular} & USA/Canada \\
\hline DS 006.7107 & \begin{tabular}{l} 
Type SAA3 10 A, 250 V, \\
complying with AS C112-1964 Ap.
\end{tabular} & Australia \\
\hline \begin{tabular}{l} 
DS 0025.2365 \\
DS 0099.1456
\end{tabular} & \begin{tabular}{l} 
DIN 49 441, 10 A, 250 V, angular \\
DIN 49 441, 10 A, 250 V, straight
\end{tabular} & Europe (except Switzerland) \\
\hline
\end{tabular}

This page is left blank intentionally.

\section*{Spare Part List}

Mechanical Drawings

This page is left blank intentionally.

\section*{List of FSU parts including spare parts}

The FSU is constructed in accordance with R\&S design 2000.
Overall dimension: \(\quad \mathrm{W} \times \mathrm{H} \times \mathrm{L}, 372,75 \times 176,50 \times 395,00\)
Rackmount:
4E 7/8 T350
Accessories: 19"-Adapter ZZA-411, Stock no. 1096.3283.00
Note: The recommended spare parts are marked \(x\) in the like column.
Table 5-2 List of all FSU part and spare parts
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline \multicolumn{6}{|l|}{Document 1129.9032.01 (FSU-Basic unit, Sheet \(1=\) FSU3/8, Sheet \(2=\) FSU26} \\
\hline 10 & Basic Unit & 1129.9032.02 & 1 S & & \\
\hline 11 & Basic Unit & 1129.9032.03 & 1 S & & \\
\hline 15 & Fan & 1091.1001.00 & 1 S & E1 & x \\
\hline 17 & Speaker & 1129.9332 .00 & 1 S & B1 & x \\
\hline 20 & Attenuator.(6-STUFIG) FSU3/8 & 1137.0599.02 & 1 S & A40 & x \\
\hline 25 & Attenuator FSU26 & 1046.5130 .02 & 1 S & A40 & x \\
\hline 26 & Insolating plate & 1129.9690 .00 & 1 S & & \\
\hline 27 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 4 S & & \\
\hline 28 & DIN6900-M2,5X6 -A2 & 0071.5040.00 & 3 S & & \\
\hline 30 & Ribbon cable W40 & 1130.2515 .00 & 1 S & W40 & \\
\hline 40 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 2 S & & \\
\hline 43 & VOL/PHONES BOARD & 1093.7094.02 & 1 S & A191 & x \\
\hline 44 & HOLDING BRACKET AF-OUT & 1129.9326 .00 & 1 S & & \\
\hline 45 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 1 S & & \\
\hline 46 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 2 S & & \\
\hline 47 & Rotary knob 9,5ACHS-RD4T-GR & 0852.1111.00 & 1 S & & \\
\hline 48 & Rotary knob 13 ACHS-RD4T-GR & 0852.1211 .00 & 1 S & & \\
\hline 49 & Ring for rotary knob & 0852.1228.00 & 1 S & & \\
\hline 50 & KEY-PROBE & 1130.2996 .02 & 15 & A80 & x \\
\hline 55 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 4 S & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline 60 & Subassembly plate & 1129.9255.00 & 1 S & & \\
\hline 61 & Subassembly plate II & 1129.9678.00 & 1 S & & \\
\hline 70 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 4 S & & \\
\hline 80 & Adhesive foil 30X20 SW & 1093.9051.00 & 4 S & & \\
\hline 81 & Adhesive foil 30X20 SW & 1093.9051.00 & 2 S & & \\
\hline 83 & Adhesive foil 30X20 SW & 1093.9051.00 & 15 & & \\
\hline 90 & Cover RD15,9 & 0009.9200.00 & 1 S & & \\
\hline 100 & RF CONVERTER & 1130.1990.02 & 1 S & A100 & x \\
\hline 105 & SYNTHESIZER & 1130.2096 .02 & 1 S & A110 & x \\
\hline 110 & DETECTOR BOARD 1 & 1130.2196 .04 & 1 S & A140 & x \\
\hline 120 & IF-FILTER & 1130.2296 .02 & 1 S & A130 & x \\
\hline 130 & CONVERTER UNIT(8 GHZ) & 1130.2396.02 & 1 S & A160 & x \\
\hline 135 & Angle bracket MW converter & 1129.9384 .00 & 1 S & & \\
\hline 136 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 2 S & & \\
\hline 140 & MW-CONVERTER UNIT 26,5 GHz & 1130.3240.26 & 1 S & A160 & x \\
\hline 160 & Air cover & 1129.9355.00 & 3 S & & \\
\hline 161 & LUFTABDECKUNG & 1129.9355.00 & 1 S & & \\
\hline 170 & Rear panel & 1129.9149 .00 & 1 S & & \\
\hline 180 & DIN6900-M2,5X6 -A2 & 0071.5040.00 & 6 S & & \\
\hline 190 & Cover 9-pin SUB-D & 1093.8990.00 & 1 S & & \\
\hline 200 & Cover 25-pin SUB-D & 1093.9000.00 & 2 S & & \\
\hline 210 & Cover RD11,1/9,9 & 0009.9217.00 & 5 S & & \\
\hline 220 & Cover f. LAN-connector & 0852.0467.00 & 3 S & & \\
\hline 225 & Cover f. IEC-BUS & 0852.0450.00 & 1 S & & \\
\hline 240 & Instrument top cover & 1129.9261 .00 & 1 S & & \\
\hline 250 & DIN6900-M2,5X6-A2 & 0071.5040.00 & 3 S & & \\
\hline 260 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 10 S & & \\
\hline 270 & Printed front panel 3.6GHz & 1129.9203 .00 & 1 S & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline 280 & Printed front panel 8GHZ & 1129.9210 .00 & 1 S & & \\
\hline 290 & Printed front panel 26.5GHZ & 1129.9226 .00 & 1 S & & \\
\hline 295 & RF-cable W1 8GHZ & 1129.9503 .00 & 1 S & W1 & x \\
\hline 315 & TESTPORT GEH. ADAPTER & 1021.0493.00 & 1 S & X1 & x \\
\hline 316 & RF-CABLE W1 26.5GHZ & 1129.9555 .00 & 1 S & W1 & x \\
\hline 330 & Assembly plate & 1093.4750.00 & 1 S & & \\
\hline 340 & Assembly plate & 1093.4772 .00 & 1 S & & \\
\hline 350 & DIN965-M2,5X6-A4-PA & 0852.3614 .0 & 4 S & & \\
\hline 410 & BW2-TUBUS 4E1/1T450 EMU & 1129.9410 .00 & 1 S & & \\
\hline 420 & BW 2 - front handle 4U & 1096.1480 .00 & 2 S & & \\
\hline 430 & Screen. M4X14 & 1096.4909.00 & 4 S & & \\
\hline 440 & BW2-instrument foot & 1096.2506.00 & 4 S & & \\
\hline 442 & SUPPORTING FOOT & 1096.2529.00 & 2 S & & \\
\hline 445 & BW2-lateral handle.T450 & 1096.2670.00 & 2 S & & \\
\hline 450 & BW2-rear panel foot 50MM & 1096.2493.00 & 4 S & & \\
\hline 455 & BW2-foil f. rear panel foot & 1096.2435.00 & 1 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1129.9032.01 (FSU-Basic unit)} \\
\hline 500 & Instrument frame & 1129.9090 .00 & 1 S & & \\
\hline 510 & MOTHERBOARD & 1130.1960 .02 & 1 S & A10 & x \\
\hline 511 & MOTHERBOARD & 1130.1760 .02 & 1 S & A10 & x \\
\hline 520 & DIN6900-M2,5X6 -A2 & 0071.5040.00 & 7 S & & \\
\hline 530 & Locking bolt M3 & 0009.6501.00 & 4 S & & \\
\hline 540 & Locking bolt \(\mathrm{H}=4,5-40\) & 1093.9180 .00 & 2 S & & \\
\hline 550 & Power supply unit 230W & 1091.2320.00 & 1 S & A20 & x \\
\hline 560 & DIN6900-M2,5X6 -A2 & 0071.5040.00 & 10 S & & \\
\hline 570 & FMR 5 & 1091.2789.00 & 1 S & A90 & x \\
\hline 571 & FMR 6/5 & 1091.2520.00 & 1 S & A90 & x \\
\hline 580 & BIOS to FMR5 & 1093.5327.00 & 1 S & & \\
\hline 581 & BIOS to FMR6 & 1155.5482 .00 & 1 S & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline 590 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 10 S & & \\
\hline 600 & Display unit & 1093.4708.03 & 1 S & & \\
\hline 601 & Display unit & 1093.4708 .05 & 1 S & & \\
\hline 610 & DIN965-M2,5X6-A4-PA & 0852.3614 .00 & 4 S & & \\
\hline 620 & Keyboard frame & 1093.5127 .00 & 1 S & & \\
\hline 630 & Keyboard mat & 1093.5133 .00 & 1 S & A16 & x \\
\hline 640 & Keyboard membrane & 1093.5140 .00 & 1 S & A15 & x \\
\hline 650 & Rotary knob RD28 ACHS-RD6 & 0852.1086.00 & 1 S & & \\
\hline 660 & DIN965-M2X6-A4-PA & 0852.3520 .00 & 10 S & & \\
\hline 670 & 3,5" FLOPPY DRIVE STD. & 0048.4935 .00 & 1 S & A30 & x \\
\hline 680 & Floppy bracket & 129.9161 .00 & 1 S & & \\
\hline 690 & W300 FLOPPY DATA & 1129.9726 .00 & 1 S & W300 & \\
\hline 691 & FLOPPY POWER & 1129.9732 .00 & 1 S & W301 & \\
\hline 700 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 3 S & & \\
\hline 702 & DIN6900-M3,0X6 -A2 & 0071.6847 .00 & 3 S & & \\
\hline 710 & Harddisk with firmware & 1130.1948.00. & 1 S & A60 & x \\
\hline 720 & Ribbon cable & 1093.5156 .00 & 1 S & W29 & \\
\hline 730 & Disk bracket & 1093.4837.00 & 1 S & & \\
\hline 740 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 2 S & & \\
\hline 750 & DIN965-M3X5-A4-PA & 0396.8023.00 & 4 S & & \\
\hline 775 & \(3,4 \mathrm{~V}\) LITHIUM-BATTERIE & 0565.1687 .00 & 1 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1093.4708.01 Page 2 (Display unit)} \\
\hline 805 & Assembly tray & 1129.9426 .00 & 1 S & & \\
\hline 810 & Shielded filter plate & 1091.2014 .00 & 1 S & & x \\
\hline 820 & RF spring (177) & 1069.3011 .00 & 2 S & & \\
\hline 830 & RF spring (137) & 1069.3105 .00 & 2 S & & \\
\hline 840 & Plate holder & 0852.0844.00 & 4 S & & \\
\hline 850 & DIN965-M2X4-A4-PA & 0852.3508.00 & 4 S & & \\
\hline 865 & Dust sealing & 1129.9449.00 & 1 S & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline 871 & VNR-08C351-INVERTER & 0048.8760.00 & 1 S & T10 & x \\
\hline 880 & DIN7985-M2X10-A4-PA & 0396.8175 .00 & 2 S & & \\
\hline 890 & DIN125-A2,2-HP & 0049.7396.00 & 2 S & & \\
\hline 892 & DIN6900-M2,5X6 -A2 & 0071.5040.00 & 2 S & & \\
\hline 905 & Converter cable L=350 & 1091.2589 .00 & 1 S & W100 & x \\
\hline 910 & Spin wheel & 0852.1170 .00 & 1 S & B10 & x \\
\hline 915 & Screw for plastic material \(1.8 \times 4,4\) & 1066.2066.00 & 3 S & & \\
\hline 921 & 800X600X3 TFT DISPLAY & 0048.8599 .00 & 1 S & A70 & x \\
\hline 930 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 4 S & & \\
\hline 932 & Space & 1129.9432 .00 & 4 S & & \\
\hline 934 & DIN965-M2,5X5-A4-PA & 0852.3608.00 & 4 S & & \\
\hline 945 & Display connector & 1091.2595.00 & 1 S & W70 & x \\
\hline 946 & Name plate for display cable & 1129.9703.00 & 1 S & & \\
\hline 950 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 2 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1144.9017.00 (Option FSU-B4 1144.9000.02)} \\
\hline 1100 & OCXO & 1093.7871.03 & 1 S & A200 & x \\
\hline 1120 & RF-cable W21 & 1129.9926 .00 & 1 S & W21 & \\
\hline \multicolumn{6}{|l|}{Documnet 1144.9500.00 (Option FSU-B16 1144.9498.02)} \\
\hline 1240 & ETHERNET CARD configured & 1144.9552 .00 & 1 S & A220 & x \\
\hline 1250 & Cable 2XRJ45 ST/ST 8polig & 1130.0935 .00 & 1 S & W32 & \\
\hline 1270 & Installation apter 8pol. & 1093.9122 .00 & 1 S & X220 & x \\
\hline 1280 & PCB holder & 1144.9530 .00 & 1 S & & \\
\hline 1285 & DIN6900-M2,5X8 -A2 & 0071.5705.00 & 1 S & & \\
\hline 1290 & CABLE FEEDTHROUGH \(10 \times 17 \times 6.8\) & 0099.1433 .00 & 1 S & & \\
\hline 1300 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 2 S & & \\
\hline 1310 & Clip RD 6 BR \& & 0080.3682.00 & 1 S & & \\
\hline 1320 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 1 S & & \\
\hline 1330 & DIN125-A2.7-A4 & 0082.4663 .00 & 1 S & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline 1340 & DIN137-A2.6-A2 & 0005.0280.00 & 1 S & & \\
\hline 1350 & DIN934-M2.5-A4 & 0088.0230.00 & 1 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1144.9300.00 (Option FSU-B25 1144.9298.02)} \\
\hline 1400 & ATTENUATOR (PARTLY ELECTRICAL) & 1108.7230.02 & 1 S & A50 & x \\
\hline 1410 & Ribbon cable 10 POL & 1129.7823.00 & 1 S & & \\
\hline 1420 & RF-CABLE W 27 & 1144.9330 .00 & 1 S & & \\
\hline 1425 & RF-CABLE W27 (FSU26) & 1144.9323 .00 & 1 S & & \\
\hline 1430 & RF-CABLE W28 (RF-CON) & 1144.9346 .00 & 1 S & & \\
\hline 1440 & RF-CABLE W28 (MW-CON) & 1144.9352 .00 & 1 S & & \\
\hline 1460 & DIN6900-M2,5X8 -A2 & 0071.5705.00 & 4 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1145.0259.00 (Option FSU-B18 1145.0242.02)} \\
\hline 1500 & MULTI-PURPOSE DRIVE (FLOPPY, PCMCIA) & 1180.4140 .03 & 1 S & A381 & x \\
\hline 1505 & HOLDER FOR MULTIPURPOSE DRIVE & 1129.9484.00 & 1 S & & \\
\hline 1506 & DIN6900-M3,0X6 -A2 & 0071.6847 .00 & 3 S & & \\
\hline 1510 & PCMCIA HARDDISK WITH SOFTWARE & 1145.0407.02 & 1 S & A380 & x \\
\hline 1550 & Cable W300 FLOPPY DATA & 1145.0265 .00 & 1 S & W300 & \\
\hline 1560 & Harddisk foil FSU & 1145.0271 .00 & 1 S & & \\
\hline 1575 & CABLE CLAMP & 0099.7825.00 & 2 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1129.7298.00 Page 2 (Option FSP-B10 1129.7246.02)} \\
\hline 1600 & EXT. GEN. CONTROL & 1093.8590.02 & 1 S & A210 & x \\
\hline 1610 & IEC-BUS Cable W21 & 1129.7252 .00 & 1 S & W21 & x \\
\hline 1612 & DIN125-A3,2-A4 & 0082.4670 .00 & 2 S & & \\
\hline 1614 & DIN137-A3-A2 & 0005.0296.00 & 2 S & & \\
\hline 1620 & Aux control cable W22 & 1129.7269 .00 & 1 S & W22 & x \\
\hline 1622 & Locking bolt M3 & 0009.6501 .00 & 2 S & & \\
\hline 1624 & DIN137-A3-A2 & 0005.0296.00 & 2 S & & \\
\hline 1626 & DIN934-M3-A4 & 0016.4398 .00 & 2 S & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Designation & Stock No. & Number & Electrical designation & Recommended Spare Parts \\
\hline \multicolumn{6}{|l|}{Documnet 1155.1612.00 (Option FSU-B20 1155.1606.04)} \\
\hline 1700 & COMPACT FLASH BOARD & 1130.3557 .02 & 1 S & A60 & \\
\hline 1710 & FLASH MEMORY CARDS MIT SOFTWARE & 1155.1641.04 & 1 S & A61/A62 & x \\
\hline 1720 & 256 MB SODIMM FUER FMR & 1138.6578 .00 & 1 S & & \\
\hline 1730 & PCB holder clamp & 1130.1260 .00 & 2 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1130.2396.01 (Converter Unit 8GHz)} \\
\hline 2000 & 8 GHZ CONVERTER & 1130.2409 .02 & 1 S & A160 & x \\
\hline 2002 & YIG-UNIT 8GHz (MICRO LAMBDA) & 1130.2744 .02 & 1 S & A161 & x \\
\hline 2003 & YIG-UNIT 8GHz (FILTRONIC) & 1130.2744 .03 & 1 S & A161 & x \\
\hline 2004 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 2 S & & \\
\hline 2006 & DIPLEXER 8GHZ & 1132.6501 .02 & 1 S & A162 & x \\
\hline 2008 & DIN6900-M2,5X5 -A2 & 0071.6830 .00 & 4 S & & \\
\hline \multicolumn{6}{|l|}{Documnet 1130.3240.01 Blatt 1 (MW-Converter Unit 26.5 GHz)} \\
\hline 2100 & 26 GHz CONVERTER & 1130.3257 .02 & 1 S & A160 & x \\
\hline 2105 & DIPLEXER 26 & 1151.3010 .02 & 1 S & A161 & x \\
\hline 2110 & DIN6900-M2,5X6-A2 & 0071.5040 .00 & 4 S & & \\
\hline 2115 & YIG UNIT (MICRO LAMBDA) & 1130.3311.26 & 1 S & A162 & x \\
\hline 2120 & DIN965-M2,5X6-A4-PA & 0852.3614.00 & 2 S & & \\
\hline 2125 & EXTENDER 26 & 1132.8504.02 & 1 S & A163 & x \\
\hline 2130 & DIN6900-M2,5X6-A2 & 0071.5040 .00 & 7 S & & \\
\hline 2135 & RF-CABLE W3 & 1130.3340 .00 & 1 S & & \\
\hline 2140 & RF-CABLE W4 & 1130.3357 .00 & 1 S & & \\
\hline 2145 & RF-CABLE W5 & 1130.3363 .00 & 1 S & & \\
\hline 2150 & HALTERUNG LO-KABEL & 1130.3292 .00 & 1 S & & \\
\hline 2155 & DIN6900-M2,5X6 -A2 & 0071.5040 .00 & 2 S & & \\
\hline 2160 & Cover B side & 1130.3270 .00 & 1 S & & \\
\hline 2165 & Cover A- side & 1130.3286 .00 & 1 S & & \\
\hline
\end{tabular}

This page is left blank intentionally.

\section*{Block Circuit Diagram}

\section*{Part List}```


[^0]:    1) The lowpass filters improve the harmonics suppression of the test signal. If the harmonics suppression at the signal generator output is already large enough, no filters are required for the frequency ranges concerned (see section "Checking Imunity to Interference" for harmonics suppression required)
[^1]:    ${ }^{1)}$ A frequency between 5 MHz and 1 GHz may be used. It is recommended to use correction values for the uncertainty of the attenuator.

